{"title":"纳米粒子束沉积技术在新型材料绿色合成中的应用","authors":"","doi":"10.33263/proceedings22.011012","DOIUrl":null,"url":null,"abstract":"The deposition of size-controlled nanoparticles (atomic clusters) onto supports from the beam is a solvent-free, green route to small-scale manufacturing of functional nanomaterials. To translate the beautiful physics and chemistry of clusters into practical applications, e.g., coatings, catalysts, biochips, biomaterials, and photonic materials, significant scale-up of the rate of deposition is needed [1,2], while reducing the loss of material in the process (to say 1-10%). For example, the deposition rate needed for industrial catalyst R&D is 10mg/hour of clusters, while for bespoke pharmaceutical manufacturing, 1-10g/hour is required. In this talk, I will discuss both the fundamental aspects of deposited clusters at the atomic-scale – as revealed by aberration-corrected scanning transmission electron microscopy [3,4] – and the status of efforts to meet the scale-up challenge, with emphasis on our “Matrix Assembly Cluster Source” (MACS) [5]. Some first practical demonstrations [6-10] of deposited clusters in heterogeneous and electrocatalysis will be presented, showing attractive activities and selectivities [1, 6-10], as an illustration of what might be done in fields as diverse as surface engineering, theranostics, photonics, and neuromorphic.","PeriodicalId":90703,"journal":{"name":"Proceedings. International Meshing Roundtable","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling-up Nanoparticle Beam Deposition for Green Synthesis of Advanced Materials\",\"authors\":\"\",\"doi\":\"10.33263/proceedings22.011012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deposition of size-controlled nanoparticles (atomic clusters) onto supports from the beam is a solvent-free, green route to small-scale manufacturing of functional nanomaterials. To translate the beautiful physics and chemistry of clusters into practical applications, e.g., coatings, catalysts, biochips, biomaterials, and photonic materials, significant scale-up of the rate of deposition is needed [1,2], while reducing the loss of material in the process (to say 1-10%). For example, the deposition rate needed for industrial catalyst R&D is 10mg/hour of clusters, while for bespoke pharmaceutical manufacturing, 1-10g/hour is required. In this talk, I will discuss both the fundamental aspects of deposited clusters at the atomic-scale – as revealed by aberration-corrected scanning transmission electron microscopy [3,4] – and the status of efforts to meet the scale-up challenge, with emphasis on our “Matrix Assembly Cluster Source” (MACS) [5]. Some first practical demonstrations [6-10] of deposited clusters in heterogeneous and electrocatalysis will be presented, showing attractive activities and selectivities [1, 6-10], as an illustration of what might be done in fields as diverse as surface engineering, theranostics, photonics, and neuromorphic.\",\"PeriodicalId\":90703,\"journal\":{\"name\":\"Proceedings. International Meshing Roundtable\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Meshing Roundtable\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33263/proceedings22.011012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Meshing Roundtable","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/proceedings22.011012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scaling-up Nanoparticle Beam Deposition for Green Synthesis of Advanced Materials
The deposition of size-controlled nanoparticles (atomic clusters) onto supports from the beam is a solvent-free, green route to small-scale manufacturing of functional nanomaterials. To translate the beautiful physics and chemistry of clusters into practical applications, e.g., coatings, catalysts, biochips, biomaterials, and photonic materials, significant scale-up of the rate of deposition is needed [1,2], while reducing the loss of material in the process (to say 1-10%). For example, the deposition rate needed for industrial catalyst R&D is 10mg/hour of clusters, while for bespoke pharmaceutical manufacturing, 1-10g/hour is required. In this talk, I will discuss both the fundamental aspects of deposited clusters at the atomic-scale – as revealed by aberration-corrected scanning transmission electron microscopy [3,4] – and the status of efforts to meet the scale-up challenge, with emphasis on our “Matrix Assembly Cluster Source” (MACS) [5]. Some first practical demonstrations [6-10] of deposited clusters in heterogeneous and electrocatalysis will be presented, showing attractive activities and selectivities [1, 6-10], as an illustration of what might be done in fields as diverse as surface engineering, theranostics, photonics, and neuromorphic.