具有节点差分隐私的发布图度分布

Wei-Yen Day, Ninghui Li, Min Lyu
{"title":"具有节点差分隐私的发布图度分布","authors":"Wei-Yen Day, Ninghui Li, Min Lyu","doi":"10.1145/2882903.2926745","DOIUrl":null,"url":null,"abstract":"Graph data publishing under node-differential privacy (node-DP) is challenging due to the huge sensitivity of queries. However, since a node in graph data oftentimes represents a person, node-DP is necessary to achieve personal data protection. In this paper, we investigate the problem of publishing the degree distribution of a graph under node-DP by exploring the projection approach to reduce the sensitivity. We propose two approaches based on aggregation and cumulative histogram to publish the degree distribution. The experiments demonstrate that our approaches greatly reduce the error of approximating the true degree distribution and have significant improvement over existing works. We also present the introspective analysis for understanding the factors of publishing the degree distribution with node-DP.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"144","resultStr":"{\"title\":\"Publishing Graph Degree Distribution with Node Differential Privacy\",\"authors\":\"Wei-Yen Day, Ninghui Li, Min Lyu\",\"doi\":\"10.1145/2882903.2926745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph data publishing under node-differential privacy (node-DP) is challenging due to the huge sensitivity of queries. However, since a node in graph data oftentimes represents a person, node-DP is necessary to achieve personal data protection. In this paper, we investigate the problem of publishing the degree distribution of a graph under node-DP by exploring the projection approach to reduce the sensitivity. We propose two approaches based on aggregation and cumulative histogram to publish the degree distribution. The experiments demonstrate that our approaches greatly reduce the error of approximating the true degree distribution and have significant improvement over existing works. We also present the introspective analysis for understanding the factors of publishing the degree distribution with node-DP.\",\"PeriodicalId\":20483,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Management of Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"144\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2926745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2926745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 144

摘要

由于查询的高度敏感性,在节点差分隐私(node-DP)下的图数据发布具有挑战性。然而,由于图数据中的节点通常代表一个人,因此需要node- dp来实现个人数据保护。本文通过探索投影法来降低灵敏度,研究了节点dp下图的度分布发布问题。我们提出了两种基于聚合和累积直方图的方法来发布度分布。实验表明,我们的方法大大减小了逼近真实度分布的误差,与现有的方法相比有了显著的改进。本文还提出了内省分析,以了解节点- dp发布度分布的影响因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Publishing Graph Degree Distribution with Node Differential Privacy
Graph data publishing under node-differential privacy (node-DP) is challenging due to the huge sensitivity of queries. However, since a node in graph data oftentimes represents a person, node-DP is necessary to achieve personal data protection. In this paper, we investigate the problem of publishing the degree distribution of a graph under node-DP by exploring the projection approach to reduce the sensitivity. We propose two approaches based on aggregation and cumulative histogram to publish the degree distribution. The experiments demonstrate that our approaches greatly reduce the error of approximating the true degree distribution and have significant improvement over existing works. We also present the introspective analysis for understanding the factors of publishing the degree distribution with node-DP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Experimental Comparison of Thirteen Relational Equi-Joins in Main Memory Rheem: Enabling Multi-Platform Task Execution Wander Join: Online Aggregation for Joins Graph Summarization for Geo-correlated Trends Detection in Social Networks Emma in Action: Declarative Dataflows for Scalable Data Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1