{"title":"演化的具有自适应算子选择和参数控制的极限学习机范式","authors":"Ke Li, Ran Wang, S. Kwong, Jingjing Cao","doi":"10.1142/S0218488513400229","DOIUrl":null,"url":null,"abstract":"Extreme Learning Machine (ELM) is an emergent technique for training Single-hidden Layer Feedforward Networks (SLFNs). It attracts significant interest during the recent years, but the randomly assigned network parameters might cause high learning risks. This fact motivates our idea in this paper to propose an evolving ELM paradigm for classification problems. In this paradigm, a Differential Evolution (DE) variant, which can online select the appropriate operator for offspring generation and adaptively adjust the corresponding control parameters, is proposed for optimizing the network. In addition, a 5-fold cross validation is adopted in the fitness assignment procedure, for improving the generalization capability. Empirical studies on several real-world classification data sets have demonstrated that the evolving ELM paradigm can generally outperform the original ELM as well as several recent classification algorithms.","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"26 1","pages":"143-154"},"PeriodicalIF":1.0000,"publicationDate":"2013-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"EVOLVING EXTREME LEARNING MACHINE PARADIGM WITH ADAPTIVE OPERATOR SELECTION AND PARAMETER CONTROL\",\"authors\":\"Ke Li, Ran Wang, S. Kwong, Jingjing Cao\",\"doi\":\"10.1142/S0218488513400229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme Learning Machine (ELM) is an emergent technique for training Single-hidden Layer Feedforward Networks (SLFNs). It attracts significant interest during the recent years, but the randomly assigned network parameters might cause high learning risks. This fact motivates our idea in this paper to propose an evolving ELM paradigm for classification problems. In this paradigm, a Differential Evolution (DE) variant, which can online select the appropriate operator for offspring generation and adaptively adjust the corresponding control parameters, is proposed for optimizing the network. In addition, a 5-fold cross validation is adopted in the fitness assignment procedure, for improving the generalization capability. Empirical studies on several real-world classification data sets have demonstrated that the evolving ELM paradigm can generally outperform the original ELM as well as several recent classification algorithms.\",\"PeriodicalId\":50283,\"journal\":{\"name\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"volume\":\"26 1\",\"pages\":\"143-154\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2013-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218488513400229\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0218488513400229","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
EVOLVING EXTREME LEARNING MACHINE PARADIGM WITH ADAPTIVE OPERATOR SELECTION AND PARAMETER CONTROL
Extreme Learning Machine (ELM) is an emergent technique for training Single-hidden Layer Feedforward Networks (SLFNs). It attracts significant interest during the recent years, but the randomly assigned network parameters might cause high learning risks. This fact motivates our idea in this paper to propose an evolving ELM paradigm for classification problems. In this paradigm, a Differential Evolution (DE) variant, which can online select the appropriate operator for offspring generation and adaptively adjust the corresponding control parameters, is proposed for optimizing the network. In addition, a 5-fold cross validation is adopted in the fitness assignment procedure, for improving the generalization capability. Empirical studies on several real-world classification data sets have demonstrated that the evolving ELM paradigm can generally outperform the original ELM as well as several recent classification algorithms.
期刊介绍:
The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.