生物医学引文筛选的主动学习

Byron C. Wallace, Kevin Small, C. Brodley, T. Trikalinos
{"title":"生物医学引文筛选的主动学习","authors":"Byron C. Wallace, Kevin Small, C. Brodley, T. Trikalinos","doi":"10.1145/1835804.1835829","DOIUrl":null,"url":null,"abstract":"Active learning (AL) is an increasingly popular strategy for mitigating the amount of labeled data required to train classifiers, thereby reducing annotator effort. We describe a real-world, deployed application of AL to the problem of biomedical citation screening for systematic reviews at the Tufts Medical Center's Evidence-based Practice Center. We propose a novel active learning strategy that exploits a priori domain knowledge provided by the expert (specifically, labeled features)and extend this model via a Linear Programming algorithm for situations where the expert can provide ranked labeled features. Our methods outperform existing AL strategies on three real-world systematic review datasets. We argue that evaluation must be specific to the scenario under consideration. To this end, we propose a new evaluation framework for finite-pool scenarios, wherein the primary aim is to label a fixed set of examples rather than to simply induce a good predictive model. We use a method from medical decision theory for eliciting the relative costs of false positives and false negatives from the domain expert, constructing a utility measure of classification performance that integrates the expert preferences. Our findings suggest that the expert can, and should, provide more information than instance labels alone. In addition to achieving strong empirical results on the citation screening problem, this work outlines many important steps for moving away from simulated active learning and toward deploying AL for real-world applications.","PeriodicalId":20529,"journal":{"name":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"124","resultStr":"{\"title\":\"Active learning for biomedical citation screening\",\"authors\":\"Byron C. Wallace, Kevin Small, C. Brodley, T. Trikalinos\",\"doi\":\"10.1145/1835804.1835829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active learning (AL) is an increasingly popular strategy for mitigating the amount of labeled data required to train classifiers, thereby reducing annotator effort. We describe a real-world, deployed application of AL to the problem of biomedical citation screening for systematic reviews at the Tufts Medical Center's Evidence-based Practice Center. We propose a novel active learning strategy that exploits a priori domain knowledge provided by the expert (specifically, labeled features)and extend this model via a Linear Programming algorithm for situations where the expert can provide ranked labeled features. Our methods outperform existing AL strategies on three real-world systematic review datasets. We argue that evaluation must be specific to the scenario under consideration. To this end, we propose a new evaluation framework for finite-pool scenarios, wherein the primary aim is to label a fixed set of examples rather than to simply induce a good predictive model. We use a method from medical decision theory for eliciting the relative costs of false positives and false negatives from the domain expert, constructing a utility measure of classification performance that integrates the expert preferences. Our findings suggest that the expert can, and should, provide more information than instance labels alone. In addition to achieving strong empirical results on the citation screening problem, this work outlines many important steps for moving away from simulated active learning and toward deploying AL for real-world applications.\",\"PeriodicalId\":20529,\"journal\":{\"name\":\"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"124\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1835804.1835829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835804.1835829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 124

摘要

主动学习(AL)是一种日益流行的策略,用于减少训练分类器所需的标记数据量,从而减少注释器的工作量。我们描述了一个真实世界,部署应用人工智能来解决塔夫茨医学中心循证实践中心系统评价的生物医学引文筛选问题。我们提出了一种新的主动学习策略,该策略利用专家提供的先验领域知识(特别是标记特征),并通过线性规划算法扩展该模型,使专家可以提供排名标记特征。我们的方法在三个真实世界的系统评价数据集上优于现有的人工智能策略。我们认为,评估必须具体到所考虑的情况。为此,我们为有限池场景提出了一个新的评估框架,其中主要目的是标记一组固定的示例,而不是简单地推导出一个好的预测模型。我们使用医疗决策理论的方法从领域专家那里引出假阳性和假阴性的相对成本,构建了一个集成专家偏好的分类性能效用度量。我们的研究结果表明,专家可以而且应该提供比实例标签更多的信息。除了在引文筛选问题上取得强有力的实证结果外,这项工作还概述了从模拟主动学习转向将人工智能部署到现实世界应用程序的许多重要步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active learning for biomedical citation screening
Active learning (AL) is an increasingly popular strategy for mitigating the amount of labeled data required to train classifiers, thereby reducing annotator effort. We describe a real-world, deployed application of AL to the problem of biomedical citation screening for systematic reviews at the Tufts Medical Center's Evidence-based Practice Center. We propose a novel active learning strategy that exploits a priori domain knowledge provided by the expert (specifically, labeled features)and extend this model via a Linear Programming algorithm for situations where the expert can provide ranked labeled features. Our methods outperform existing AL strategies on three real-world systematic review datasets. We argue that evaluation must be specific to the scenario under consideration. To this end, we propose a new evaluation framework for finite-pool scenarios, wherein the primary aim is to label a fixed set of examples rather than to simply induce a good predictive model. We use a method from medical decision theory for eliciting the relative costs of false positives and false negatives from the domain expert, constructing a utility measure of classification performance that integrates the expert preferences. Our findings suggest that the expert can, and should, provide more information than instance labels alone. In addition to achieving strong empirical results on the citation screening problem, this work outlines many important steps for moving away from simulated active learning and toward deploying AL for real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Frequent regular itemset mining Suggesting friends using the implicit social graph Collusion-resistant privacy-preserving data mining Mining advisor-advisee relationships from research publication networks Session details: Research track 5: classification models and tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1