智能系统的自编程突触电阻电路

Christopher M. Shaffer, Atharva Deo, Andrew Tudor, Rahul Shenoy, Cameron D. Danesh, Dhruva Nathan, Lawren L. Gamble, D. Inman, Yong Chen
{"title":"智能系统的自编程突触电阻电路","authors":"Christopher M. Shaffer, Atharva Deo, Andrew Tudor, Rahul Shenoy, Cameron D. Danesh, Dhruva Nathan, Lawren L. Gamble, D. Inman, Yong Chen","doi":"10.1002/aisy.202100016","DOIUrl":null,"url":null,"abstract":"Unlike artificial intelligent systems based on computers which have to be programmed for specific tasks, the human brain “self‐programs” in real time to create new tactics and adapt to arbitrary environments. Computers embedded in artificial intelligent systems execute arbitrary signal‐processing algorithms to outperform humans at specific tasks, but without the real‐time self‐programming functionality, they are preprogrammed by humans, fail in unpredictable environments beyond their preprogrammed domains, and lack general intelligence in arbitrary environments. Herein, a synaptic resistor circuit that self‐programs in arbitrary and unpredictable environments in real time is demonstrated. By integrating the synaptic signal processing, memory, and correlative learning functions in each synaptic resistor, the synaptic resistor circuit processes signals and self‐programs the circuit concurrently in real time with an energy efficiency about six orders higher than those of computers. In comparison with humans and a preprogrammed computer, the self‐programming synaptic resistor circuit dynamically modifies its algorithm to control a morphing wing in an unpredictable aerodynamic environment to improve its performance function with superior self‐programming speeds and accuracy. The synaptic resistor circuits potentially circumvent the fundamental limitations of computers, leading to a new intelligent platform with real‐time self‐programming functionality for artificial general intelligence.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Self‐Programming Synaptic Resistor Circuit for Intelligent Systems\",\"authors\":\"Christopher M. Shaffer, Atharva Deo, Andrew Tudor, Rahul Shenoy, Cameron D. Danesh, Dhruva Nathan, Lawren L. Gamble, D. Inman, Yong Chen\",\"doi\":\"10.1002/aisy.202100016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unlike artificial intelligent systems based on computers which have to be programmed for specific tasks, the human brain “self‐programs” in real time to create new tactics and adapt to arbitrary environments. Computers embedded in artificial intelligent systems execute arbitrary signal‐processing algorithms to outperform humans at specific tasks, but without the real‐time self‐programming functionality, they are preprogrammed by humans, fail in unpredictable environments beyond their preprogrammed domains, and lack general intelligence in arbitrary environments. Herein, a synaptic resistor circuit that self‐programs in arbitrary and unpredictable environments in real time is demonstrated. By integrating the synaptic signal processing, memory, and correlative learning functions in each synaptic resistor, the synaptic resistor circuit processes signals and self‐programs the circuit concurrently in real time with an energy efficiency about six orders higher than those of computers. In comparison with humans and a preprogrammed computer, the self‐programming synaptic resistor circuit dynamically modifies its algorithm to control a morphing wing in an unpredictable aerodynamic environment to improve its performance function with superior self‐programming speeds and accuracy. The synaptic resistor circuits potentially circumvent the fundamental limitations of computers, leading to a new intelligent platform with real‐time self‐programming functionality for artificial general intelligence.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202100016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202100016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

与基于计算机的人工智能系统不同,人工智能系统必须为特定的任务编程,而人脑可以实时“自我编程”,以创造新的策略并适应任意的环境。嵌入人工智能系统的计算机执行任意信号处理算法,以在特定任务中超越人类,但没有实时自我编程功能,它们是由人类预编程的,在超出预编程域的不可预测环境中失败,并且在任意环境中缺乏通用智能。本文演示了一种在任意和不可预测的环境中实时自编程的突触电阻电路。通过在每个突触电阻器中集成突触信号处理、记忆和相关学习功能,突触电阻器电路实时处理信号并同时对电路进行自编程,其能量效率比计算机高约6个数量级。与人类和预编程计算机相比,自编程突触电阻电路动态修改其算法,以在不可预测的空气动力学环境中控制变形机翼,从而以优越的自编程速度和精度提高其性能功能。突触电阻电路有可能绕过计算机的基本限制,为人工通用智能提供一个具有实时自编程功能的新智能平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self‐Programming Synaptic Resistor Circuit for Intelligent Systems
Unlike artificial intelligent systems based on computers which have to be programmed for specific tasks, the human brain “self‐programs” in real time to create new tactics and adapt to arbitrary environments. Computers embedded in artificial intelligent systems execute arbitrary signal‐processing algorithms to outperform humans at specific tasks, but without the real‐time self‐programming functionality, they are preprogrammed by humans, fail in unpredictable environments beyond their preprogrammed domains, and lack general intelligence in arbitrary environments. Herein, a synaptic resistor circuit that self‐programs in arbitrary and unpredictable environments in real time is demonstrated. By integrating the synaptic signal processing, memory, and correlative learning functions in each synaptic resistor, the synaptic resistor circuit processes signals and self‐programs the circuit concurrently in real time with an energy efficiency about six orders higher than those of computers. In comparison with humans and a preprogrammed computer, the self‐programming synaptic resistor circuit dynamically modifies its algorithm to control a morphing wing in an unpredictable aerodynamic environment to improve its performance function with superior self‐programming speeds and accuracy. The synaptic resistor circuits potentially circumvent the fundamental limitations of computers, leading to a new intelligent platform with real‐time self‐programming functionality for artificial general intelligence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Tactile Synthetic Tissue: from Soft Robotics to Hybrid Surgical Simulators Maximizing the Synaptic Efficiency of Ferroelectric Tunnel Junction Devices Using a Switching Mechanism Hidden in an Identical Pulse Programming Learning Scheme Enhancing Sensitivity across Scales with Highly Sensitive Hall Effect‐Based Auxetic Tactile Sensors 3D Printed Swordfish‐Like Wireless Millirobot Widened Attention‐Enhanced Atrous Convolutional Network for Efficient Embedded Vision Applications under Resource Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1