移动计算环境下预测和轨迹感知边缘服务分配方法

IF 0.8 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Web Services Research Pub Date : 2022-01-01 DOI:10.4018/ijwsr.302639
Ling Huang, B. Shuai
{"title":"移动计算环境下预测和轨迹感知边缘服务分配方法","authors":"Ling Huang, B. Shuai","doi":"10.4018/ijwsr.302639","DOIUrl":null,"url":null,"abstract":"The mobile edge computing (MEC) model is featured by the ability to provision elastic computing resources close to user requests at the edge of the internet. This paradigm moves traditional digital infrastructure close to mobile networks and extensively reduces application latency for mobile computing tasks like online gaming and video streaming. Nevertheless, it remains a difficulty to provide a effective and performance-guaranteed edge service offloading and migration in the MEC environment. Most existing contributions in this area consider task offloading as a offline decision making process by exploiting transient positions of mobile requesters as model inputs. In this work instead, we develop a predictive-trajectory-aware and online MEC task offloading strategy. Simulations based on real-world MEC deployment datasets and a campus mobile trajectory datasets clearly illustrate that our approach outperforms state-of-the-art ones in terms of effective service rate and migration overhead.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"22 4 1","pages":"1-18"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Predictive and Trajectory-Aware Edge Service Allocation Approach in a Mobile Computing Environment\",\"authors\":\"Ling Huang, B. Shuai\",\"doi\":\"10.4018/ijwsr.302639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mobile edge computing (MEC) model is featured by the ability to provision elastic computing resources close to user requests at the edge of the internet. This paradigm moves traditional digital infrastructure close to mobile networks and extensively reduces application latency for mobile computing tasks like online gaming and video streaming. Nevertheless, it remains a difficulty to provide a effective and performance-guaranteed edge service offloading and migration in the MEC environment. Most existing contributions in this area consider task offloading as a offline decision making process by exploiting transient positions of mobile requesters as model inputs. In this work instead, we develop a predictive-trajectory-aware and online MEC task offloading strategy. Simulations based on real-world MEC deployment datasets and a campus mobile trajectory datasets clearly illustrate that our approach outperforms state-of-the-art ones in terms of effective service rate and migration overhead.\",\"PeriodicalId\":54936,\"journal\":{\"name\":\"International Journal of Web Services Research\",\"volume\":\"22 4 1\",\"pages\":\"1-18\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Services Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijwsr.302639\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijwsr.302639","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

移动边缘计算(MEC)模型的特点是能够在互联网边缘提供接近用户请求的弹性计算资源。这种模式使传统的数字基础设施更接近移动网络,并大大减少了在线游戏和视频流等移动计算任务的应用程序延迟。然而,在MEC环境中提供有效且有性能保证的边缘服务卸载和迁移仍然是一个困难。该领域的大多数现有贡献都将任务卸载视为一种离线决策过程,通过利用移动请求者的临时位置作为模型输入。在这项工作中,我们开发了一种预测轨迹感知和在线MEC任务卸载策略。基于真实世界MEC部署数据集和校园移动轨迹数据集的模拟清楚地表明,我们的方法在有效服务率和迁移开销方面优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Predictive and Trajectory-Aware Edge Service Allocation Approach in a Mobile Computing Environment
The mobile edge computing (MEC) model is featured by the ability to provision elastic computing resources close to user requests at the edge of the internet. This paradigm moves traditional digital infrastructure close to mobile networks and extensively reduces application latency for mobile computing tasks like online gaming and video streaming. Nevertheless, it remains a difficulty to provide a effective and performance-guaranteed edge service offloading and migration in the MEC environment. Most existing contributions in this area consider task offloading as a offline decision making process by exploiting transient positions of mobile requesters as model inputs. In this work instead, we develop a predictive-trajectory-aware and online MEC task offloading strategy. Simulations based on real-world MEC deployment datasets and a campus mobile trajectory datasets clearly illustrate that our approach outperforms state-of-the-art ones in terms of effective service rate and migration overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Web Services Research
International Journal of Web Services Research 工程技术-计算机:软件工程
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.
期刊最新文献
A Quasi-Newton Matrix Factorization-Based Model for Recommendation A Service Recommendation Algorithm Based on Self-Attention Mechanism and DeepFM Secure Cloud Storage and Retrieval of Personal Health Data From Smart Wearable Devices With Privacy-Preserving Techniques User Interaction Within Online Innovation Communities Research on a New Reconstruction Technology and Evaluation Method for 3D Digital Core Pore Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1