{"title":"移动计算环境下预测和轨迹感知边缘服务分配方法","authors":"Ling Huang, B. Shuai","doi":"10.4018/ijwsr.302639","DOIUrl":null,"url":null,"abstract":"The mobile edge computing (MEC) model is featured by the ability to provision elastic computing resources close to user requests at the edge of the internet. This paradigm moves traditional digital infrastructure close to mobile networks and extensively reduces application latency for mobile computing tasks like online gaming and video streaming. Nevertheless, it remains a difficulty to provide a effective and performance-guaranteed edge service offloading and migration in the MEC environment. Most existing contributions in this area consider task offloading as a offline decision making process by exploiting transient positions of mobile requesters as model inputs. In this work instead, we develop a predictive-trajectory-aware and online MEC task offloading strategy. Simulations based on real-world MEC deployment datasets and a campus mobile trajectory datasets clearly illustrate that our approach outperforms state-of-the-art ones in terms of effective service rate and migration overhead.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"22 4 1","pages":"1-18"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Predictive and Trajectory-Aware Edge Service Allocation Approach in a Mobile Computing Environment\",\"authors\":\"Ling Huang, B. Shuai\",\"doi\":\"10.4018/ijwsr.302639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mobile edge computing (MEC) model is featured by the ability to provision elastic computing resources close to user requests at the edge of the internet. This paradigm moves traditional digital infrastructure close to mobile networks and extensively reduces application latency for mobile computing tasks like online gaming and video streaming. Nevertheless, it remains a difficulty to provide a effective and performance-guaranteed edge service offloading and migration in the MEC environment. Most existing contributions in this area consider task offloading as a offline decision making process by exploiting transient positions of mobile requesters as model inputs. In this work instead, we develop a predictive-trajectory-aware and online MEC task offloading strategy. Simulations based on real-world MEC deployment datasets and a campus mobile trajectory datasets clearly illustrate that our approach outperforms state-of-the-art ones in terms of effective service rate and migration overhead.\",\"PeriodicalId\":54936,\"journal\":{\"name\":\"International Journal of Web Services Research\",\"volume\":\"22 4 1\",\"pages\":\"1-18\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Services Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijwsr.302639\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijwsr.302639","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Predictive and Trajectory-Aware Edge Service Allocation Approach in a Mobile Computing Environment
The mobile edge computing (MEC) model is featured by the ability to provision elastic computing resources close to user requests at the edge of the internet. This paradigm moves traditional digital infrastructure close to mobile networks and extensively reduces application latency for mobile computing tasks like online gaming and video streaming. Nevertheless, it remains a difficulty to provide a effective and performance-guaranteed edge service offloading and migration in the MEC environment. Most existing contributions in this area consider task offloading as a offline decision making process by exploiting transient positions of mobile requesters as model inputs. In this work instead, we develop a predictive-trajectory-aware and online MEC task offloading strategy. Simulations based on real-world MEC deployment datasets and a campus mobile trajectory datasets clearly illustrate that our approach outperforms state-of-the-art ones in terms of effective service rate and migration overhead.
期刊介绍:
The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.