壳聚糖包被氧化铈纳米颗粒和司帕沙星包封聚合体作为新型抗菌药物体系

Siqi Zhao
{"title":"壳聚糖包被氧化铈纳米颗粒和司帕沙星包封聚合体作为新型抗菌药物体系","authors":"Siqi Zhao","doi":"10.17760/d20292602","DOIUrl":null,"url":null,"abstract":"Bacterial infections are a common problem worldwide. In the 20 century, because of the discovery of penicillin, for the first time, people had an effective way to fight bacterial infections. However, with the abuse of antibiotics, many bacteria are developing a resistance to such drugs. Now, bacteria can survive an antibiotic attack, making them more dangerous and potentially fatal to the patient. Nanoparticles have aroused interest as a new antimicrobial treatment due to their excellent ability to kill bacteria. Moreover, bacteria are less likely to develop resistance against nanoparticles because nanoparticles use a variety of different mechanisms to kill bacteria such as increased reactive oxygen species generation, blocking of membrane pores, etc. Herein, we synthesized novel cerium oxide nanoparticles (CeNPs) and tested their antibacterial properties due to their ability to change oxidative state with pH changes. Results showed that they are effective against Gram-positive bacteria like Staphylococcus epidermidis at 250 μg/ml. In contrast, cytotoxicity tests indicated that CeNPs are not toxic to human dermal fibroblasts (HDF) when the concentration is below 500 μg/ml. However, the problem with CeNPs is their tendency to agglomerate because of their tiny size and high surface energy, which reduces their efficiency. Therefore, we added chitosan to the CeNP suspension to provide a coating that reduces agglomeration. The chitosan-coated CeNPs (C-CeNPs) were better dispersed in water, and they showed better antimicrobial properties than CeNPs alone. Furthermore, we also used polymersomes as a novel nanocarrier for C-CeNPs and drugs which can help control drug release in the human body. After encapsulating CCeNPs and sparfloxacin (an antibiotic) together into polymersomes, this new drug system showed better antibacterial properties than just the drug itself, which indicates such nanodevices should be studied for a wide range of antibacterial applications.","PeriodicalId":22842,"journal":{"name":"Theory of Computing Systems \\/ Mathematical Systems Theory","volume":"1 1","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chitosan-Coated Cerium Oxide Nanoparticles and Sparfloxacin Encapsulated Polymersomes as a New Drug System with Antimicrobial Properties\",\"authors\":\"Siqi Zhao\",\"doi\":\"10.17760/d20292602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacterial infections are a common problem worldwide. In the 20 century, because of the discovery of penicillin, for the first time, people had an effective way to fight bacterial infections. However, with the abuse of antibiotics, many bacteria are developing a resistance to such drugs. Now, bacteria can survive an antibiotic attack, making them more dangerous and potentially fatal to the patient. Nanoparticles have aroused interest as a new antimicrobial treatment due to their excellent ability to kill bacteria. Moreover, bacteria are less likely to develop resistance against nanoparticles because nanoparticles use a variety of different mechanisms to kill bacteria such as increased reactive oxygen species generation, blocking of membrane pores, etc. Herein, we synthesized novel cerium oxide nanoparticles (CeNPs) and tested their antibacterial properties due to their ability to change oxidative state with pH changes. Results showed that they are effective against Gram-positive bacteria like Staphylococcus epidermidis at 250 μg/ml. In contrast, cytotoxicity tests indicated that CeNPs are not toxic to human dermal fibroblasts (HDF) when the concentration is below 500 μg/ml. However, the problem with CeNPs is their tendency to agglomerate because of their tiny size and high surface energy, which reduces their efficiency. Therefore, we added chitosan to the CeNP suspension to provide a coating that reduces agglomeration. The chitosan-coated CeNPs (C-CeNPs) were better dispersed in water, and they showed better antimicrobial properties than CeNPs alone. Furthermore, we also used polymersomes as a novel nanocarrier for C-CeNPs and drugs which can help control drug release in the human body. After encapsulating CCeNPs and sparfloxacin (an antibiotic) together into polymersomes, this new drug system showed better antibacterial properties than just the drug itself, which indicates such nanodevices should be studied for a wide range of antibacterial applications.\",\"PeriodicalId\":22842,\"journal\":{\"name\":\"Theory of Computing Systems \\\\/ Mathematical Systems Theory\",\"volume\":\"1 1\",\"pages\":\"8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Computing Systems \\\\/ Mathematical Systems Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17760/d20292602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing Systems \\/ Mathematical Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17760/d20292602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

细菌感染是世界范围内的一个普遍问题。在20世纪,由于青霉素的发现,人们第一次有了对抗细菌感染的有效方法。然而,随着抗生素的滥用,许多细菌正在对这些药物产生耐药性。现在,细菌可以在抗生素的攻击下存活下来,这使得它们对病人来说更加危险,甚至可能致命。纳米颗粒作为一种新的抗菌治疗手段,由于其优异的杀菌能力而引起了人们的兴趣。此外,细菌不太可能对纳米颗粒产生耐药性,因为纳米颗粒使用各种不同的机制来杀死细菌,如增加活性氧的产生,堵塞膜孔等。在此,我们合成了新型氧化铈纳米颗粒(CeNPs),并测试了它们的抗菌性能,因为它们能够随着pH的变化而改变氧化状态。结果表明,在浓度为250 μg/ml时对表皮葡萄球菌等革兰氏阳性菌有较好的抑菌效果。细胞毒性试验表明,当浓度低于500 μg/ml时,CeNPs对人真皮成纤维细胞(HDF)无毒性。然而,cenp的问题在于它们的体积小,表面能高,容易聚集,这降低了它们的效率。因此,我们将壳聚糖添加到CeNP悬浮液中,以提供减少团聚的涂层。壳聚糖包被的CeNPs (C-CeNPs)在水中的分散性更好,抗菌性能优于单独包被的CeNPs。此外,我们还利用聚合体作为C-CeNPs和药物的新型纳米载体,帮助控制药物在人体内的释放。在将CCeNPs和司帕沙星(一种抗生素)包封在聚合体中后,这种新的药物系统显示出比药物本身更好的抗菌性能,这表明这种纳米器件应该被研究用于更广泛的抗菌应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chitosan-Coated Cerium Oxide Nanoparticles and Sparfloxacin Encapsulated Polymersomes as a New Drug System with Antimicrobial Properties
Bacterial infections are a common problem worldwide. In the 20 century, because of the discovery of penicillin, for the first time, people had an effective way to fight bacterial infections. However, with the abuse of antibiotics, many bacteria are developing a resistance to such drugs. Now, bacteria can survive an antibiotic attack, making them more dangerous and potentially fatal to the patient. Nanoparticles have aroused interest as a new antimicrobial treatment due to their excellent ability to kill bacteria. Moreover, bacteria are less likely to develop resistance against nanoparticles because nanoparticles use a variety of different mechanisms to kill bacteria such as increased reactive oxygen species generation, blocking of membrane pores, etc. Herein, we synthesized novel cerium oxide nanoparticles (CeNPs) and tested their antibacterial properties due to their ability to change oxidative state with pH changes. Results showed that they are effective against Gram-positive bacteria like Staphylococcus epidermidis at 250 μg/ml. In contrast, cytotoxicity tests indicated that CeNPs are not toxic to human dermal fibroblasts (HDF) when the concentration is below 500 μg/ml. However, the problem with CeNPs is their tendency to agglomerate because of their tiny size and high surface energy, which reduces their efficiency. Therefore, we added chitosan to the CeNP suspension to provide a coating that reduces agglomeration. The chitosan-coated CeNPs (C-CeNPs) were better dispersed in water, and they showed better antimicrobial properties than CeNPs alone. Furthermore, we also used polymersomes as a novel nanocarrier for C-CeNPs and drugs which can help control drug release in the human body. After encapsulating CCeNPs and sparfloxacin (an antibiotic) together into polymersomes, this new drug system showed better antibacterial properties than just the drug itself, which indicates such nanodevices should be studied for a wide range of antibacterial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trend Significance Levels of Rain Onset and Cessation and Lengths of the Wet and Dry Seasons in Epe, Lagos State, Nigeria Effect of drying method on compressive strength of straw-based thermal insulations CONTENT MANAGEMENT SYSTEM FOR SCHOOL INFORMATION WEBSITE Buckling length of reinforced concrete columns in non-sway constructions Static analysis of bond between prestressing strand and UHPC exposed to elevated temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1