O. Dolotko, A. Senyshyn, M.J. Muhlbauer, K. Nikolowski, H. Ehrenberg
{"title":"商用LiCoO2电池的疲劳过程:原位中子衍射和电化学研究","authors":"O. Dolotko, A. Senyshyn, M.J. Muhlbauer, K. Nikolowski, H. Ehrenberg","doi":"10.1109/OMEE.2012.6464826","DOIUrl":null,"url":null,"abstract":"In situ high-resolution neutron powder diffraction along with electrochemical analysis was used to study fatigue processes in commercial LiCoO2 (18650-type) batteries. The electrochemical and structural behavior of cathode and anode materials in fully charged and discharged states has been studied for cells exhibiting different cycling at 25°C and 50°C. High-resolution neutron powder diffraction leads us to observe simultaneous changes in LiCoO2 cathode and graphitic anode, which are related to lithium de-/intercalation processes during the battery operation. Detailed features of the battery organization and details of its evolution on a micrometer scale have been visualized using neutron radiography and tomography.","PeriodicalId":6332,"journal":{"name":"2012 IEEE International Conference on Oxide Materials for Electronic Engineering (OMEE)","volume":"24 1","pages":"96-96"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue processes in commercial LiCoO2 batteries: In situ neutron diffraction and electrochemical study\",\"authors\":\"O. Dolotko, A. Senyshyn, M.J. Muhlbauer, K. Nikolowski, H. Ehrenberg\",\"doi\":\"10.1109/OMEE.2012.6464826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In situ high-resolution neutron powder diffraction along with electrochemical analysis was used to study fatigue processes in commercial LiCoO2 (18650-type) batteries. The electrochemical and structural behavior of cathode and anode materials in fully charged and discharged states has been studied for cells exhibiting different cycling at 25°C and 50°C. High-resolution neutron powder diffraction leads us to observe simultaneous changes in LiCoO2 cathode and graphitic anode, which are related to lithium de-/intercalation processes during the battery operation. Detailed features of the battery organization and details of its evolution on a micrometer scale have been visualized using neutron radiography and tomography.\",\"PeriodicalId\":6332,\"journal\":{\"name\":\"2012 IEEE International Conference on Oxide Materials for Electronic Engineering (OMEE)\",\"volume\":\"24 1\",\"pages\":\"96-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Oxide Materials for Electronic Engineering (OMEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OMEE.2012.6464826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Oxide Materials for Electronic Engineering (OMEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMEE.2012.6464826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fatigue processes in commercial LiCoO2 batteries: In situ neutron diffraction and electrochemical study
In situ high-resolution neutron powder diffraction along with electrochemical analysis was used to study fatigue processes in commercial LiCoO2 (18650-type) batteries. The electrochemical and structural behavior of cathode and anode materials in fully charged and discharged states has been studied for cells exhibiting different cycling at 25°C and 50°C. High-resolution neutron powder diffraction leads us to observe simultaneous changes in LiCoO2 cathode and graphitic anode, which are related to lithium de-/intercalation processes during the battery operation. Detailed features of the battery organization and details of its evolution on a micrometer scale have been visualized using neutron radiography and tomography.