基于图像分类和CNN的无修改隐写算法

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Digital Crime and Forensics Pub Date : 2021-05-01 DOI:10.4018/IJDCF.20210501.OA4
Jianbin Wu, Yang Zhang, Chuwei Luo, L. Yuan, X. Shen
{"title":"基于图像分类和CNN的无修改隐写算法","authors":"Jianbin Wu, Yang Zhang, Chuwei Luo, L. Yuan, X. Shen","doi":"10.4018/IJDCF.20210501.OA4","DOIUrl":null,"url":null,"abstract":"In order to improve the data-embedding capacity of modification-free steganography algorithm, scholars have done a lot of research work to meet practical demands. By researching the user's behavioral habits of several social platforms, a semi-structured modification-free steganography algorithm is introduced in the paper. By constructing the mapping relationship between small icons and binary numbers, the idea of image stitching is utilized, and small icons are stitched together according to the behavioral habits of people's social platforms to implement the graphical representation of secret messages. The convolutional neural network (CNN) has been used to train the small icon recognition and classification data set in the algorithm. In order to improve the robustness of the algorithm, the icons processed by various attack methods are introduced as interference samples in the training set. The experimental results show that the algorithm has good anti-attack ability, and the hiding capacity can be improved, which can be used in the covert communication.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Modification-Free Steganography Algorithm Based on Image Classification and CNN\",\"authors\":\"Jianbin Wu, Yang Zhang, Chuwei Luo, L. Yuan, X. Shen\",\"doi\":\"10.4018/IJDCF.20210501.OA4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the data-embedding capacity of modification-free steganography algorithm, scholars have done a lot of research work to meet practical demands. By researching the user's behavioral habits of several social platforms, a semi-structured modification-free steganography algorithm is introduced in the paper. By constructing the mapping relationship between small icons and binary numbers, the idea of image stitching is utilized, and small icons are stitched together according to the behavioral habits of people's social platforms to implement the graphical representation of secret messages. The convolutional neural network (CNN) has been used to train the small icon recognition and classification data set in the algorithm. In order to improve the robustness of the algorithm, the icons processed by various attack methods are introduced as interference samples in the training set. The experimental results show that the algorithm has good anti-attack ability, and the hiding capacity can be improved, which can be used in the covert communication.\",\"PeriodicalId\":44650,\"journal\":{\"name\":\"International Journal of Digital Crime and Forensics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Digital Crime and Forensics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJDCF.20210501.OA4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDCF.20210501.OA4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

为了提高无修改隐写算法的数据嵌入能力,为了满足实际需求,学者们进行了大量的研究工作。本文通过对多个社交平台用户行为习惯的研究,提出了一种半结构化的无修改隐写算法。通过构建小图标与二进制数之间的映射关系,利用图像拼接的思想,根据人们在社交平台上的行为习惯将小图标拼接在一起,实现秘密信息的图形化表示。该算法采用卷积神经网络(CNN)对小图标识别和分类数据集进行训练。为了提高算法的鲁棒性,在训练集中引入了经过各种攻击方法处理的图标作为干扰样本。实验结果表明,该算法具有良好的抗攻击能力,并能提高隐藏能力,可用于隐蔽通信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Modification-Free Steganography Algorithm Based on Image Classification and CNN
In order to improve the data-embedding capacity of modification-free steganography algorithm, scholars have done a lot of research work to meet practical demands. By researching the user's behavioral habits of several social platforms, a semi-structured modification-free steganography algorithm is introduced in the paper. By constructing the mapping relationship between small icons and binary numbers, the idea of image stitching is utilized, and small icons are stitched together according to the behavioral habits of people's social platforms to implement the graphical representation of secret messages. The convolutional neural network (CNN) has been used to train the small icon recognition and classification data set in the algorithm. In order to improve the robustness of the algorithm, the icons processed by various attack methods are introduced as interference samples in the training set. The experimental results show that the algorithm has good anti-attack ability, and the hiding capacity can be improved, which can be used in the covert communication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
期刊最新文献
Efficient Task Offloading for Mobile Edge Computing in Vehicular Networks Examining the Behavior of Web Browsers Using Popular Forensic Tools Laboratory Dangerous Operation Behavior Detection System Based on Deep Learning Algorithm A Novel Watermarking Scheme for Audio Data Stored in Third Party Servers Assurance of Network Communication Information Security Based on Cyber-Physical Fusion and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1