{"title":"耐力训练和腺苷对雄性大鼠脑缺血-再灌注模型A2B基因表达的影响","authors":"Mansur Rahimi, F. Nameni","doi":"10.52547/shefa.9.1.79","DOIUrl":null,"url":null,"abstract":"Introduction: Stroke is one of the mos t prevalent causes of death worldwide. Strategies that increase the resistance of neural cells to ischemia-induced damages are crucial to prevent brain damage. This study aimed to investigate the effect of endurance training and adenosine injection on the expression of the A2B gene after ischemia-reperfusion in Wistar rats. Materials and Methods: 40 male Wistar rats (220±20g) were divided into four groups; endurance training +adenosine+ ischemia, ischemia+ adenosine, endurance training+ ischemia, and control. Ischemic induction was conducted through the common carotid artery ligation. After the ischemic insult, an endurance training protocol was performed. Eight weeks after ischemic induction and exercise protocol, blood samples were taken from rats, and expression of the A2B gene was measured. Results: There was a significant difference in the expression of the A2B gene between the ischemic control and endurance training +adenosine+ ischemia groups. Conclusion: It seems endurance training protocol protected neurons from ischemic injury and improved rat brain function. The administration of adenosine has also played an important role in the regulatory mechanisms of ischemic-reperfusi","PeriodicalId":22899,"journal":{"name":"The Neuroscience Journal of Shefaye Khatam","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of Endurance Training and Adenosine on the Expression of the A2B Gene on the Ischemic-Reperfusion Model of the Male Rat Brain\",\"authors\":\"Mansur Rahimi, F. Nameni\",\"doi\":\"10.52547/shefa.9.1.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Stroke is one of the mos t prevalent causes of death worldwide. Strategies that increase the resistance of neural cells to ischemia-induced damages are crucial to prevent brain damage. This study aimed to investigate the effect of endurance training and adenosine injection on the expression of the A2B gene after ischemia-reperfusion in Wistar rats. Materials and Methods: 40 male Wistar rats (220±20g) were divided into four groups; endurance training +adenosine+ ischemia, ischemia+ adenosine, endurance training+ ischemia, and control. Ischemic induction was conducted through the common carotid artery ligation. After the ischemic insult, an endurance training protocol was performed. Eight weeks after ischemic induction and exercise protocol, blood samples were taken from rats, and expression of the A2B gene was measured. Results: There was a significant difference in the expression of the A2B gene between the ischemic control and endurance training +adenosine+ ischemia groups. Conclusion: It seems endurance training protocol protected neurons from ischemic injury and improved rat brain function. The administration of adenosine has also played an important role in the regulatory mechanisms of ischemic-reperfusi\",\"PeriodicalId\":22899,\"journal\":{\"name\":\"The Neuroscience Journal of Shefaye Khatam\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Neuroscience Journal of Shefaye Khatam\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/shefa.9.1.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Neuroscience Journal of Shefaye Khatam","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/shefa.9.1.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of Endurance Training and Adenosine on the Expression of the A2B Gene on the Ischemic-Reperfusion Model of the Male Rat Brain
Introduction: Stroke is one of the mos t prevalent causes of death worldwide. Strategies that increase the resistance of neural cells to ischemia-induced damages are crucial to prevent brain damage. This study aimed to investigate the effect of endurance training and adenosine injection on the expression of the A2B gene after ischemia-reperfusion in Wistar rats. Materials and Methods: 40 male Wistar rats (220±20g) were divided into four groups; endurance training +adenosine+ ischemia, ischemia+ adenosine, endurance training+ ischemia, and control. Ischemic induction was conducted through the common carotid artery ligation. After the ischemic insult, an endurance training protocol was performed. Eight weeks after ischemic induction and exercise protocol, blood samples were taken from rats, and expression of the A2B gene was measured. Results: There was a significant difference in the expression of the A2B gene between the ischemic control and endurance training +adenosine+ ischemia groups. Conclusion: It seems endurance training protocol protected neurons from ischemic injury and improved rat brain function. The administration of adenosine has also played an important role in the regulatory mechanisms of ischemic-reperfusi