海底分离:提高产水量和优化净现值的途径

Carlos Alberto Capela Moraes, S. Shaiek
{"title":"海底分离:提高产水量和优化净现值的途径","authors":"Carlos Alberto Capela Moraes, S. Shaiek","doi":"10.4043/29527-MS","DOIUrl":null,"url":null,"abstract":"\n There are still few subsea water removal systems, but looking at deeper offshore scenario the conventional topside water removal and treatment configuration is not acceptable, either from the economic or technical point of view. Increasing water cuts penalizes field revenue outcome along its productive life. The paper will demonstrate on several business cases that the best way to reduce these penalties is to get rid of water as soon as possible with subsea solutions.\n We start discussing the economics of a subsea primary separation station. In this focus, some examples based on hypothetical production curves show the gains in terms of increased total volume of recoverable oil that can be obtained with the approach of using a subsea water removal system, compared to conventional topside produced water management system. Some sensitivity on the influence of the parameter hypothetical values used in the analysis is also presented and they show that this trend is indisputable. It can also be concluded that these advantages increase with increasing water depth.\n The main conclusion of the paper is that the traditional all topside water management system, although being one business case for a field development, it is not the best configuration and it leads to lower net present value (NPV) for the whole project, since some oil is left behind due to increasing water cuts, and subsea water removal improves NPV of the project. Then it is discussed the question on why, being this the case, not much Operators consider this alternative configuration for production development. On this focus, the paper also discusses the main concerns regarding a subsea processing installation, from the point of view of operation, maintenance and reliability – justifiable concerns that have to be addressed by subsea system suppliers. Finally, it is presented the optimized concept of configuration for subsea water removal, treatment and re-injection system, whose first version was already object of an OTC presentation in 2015 (OTC-25934-MS), and since then it has been further developed and optimized through Joint Industry Projects with Operators. It is shown that this system is conceptually designed in order to increase robustness regarding a wide diversity of field conditions and production issues, requiring low maintenance. This analysis is made comparing SpoolSep concept with the alternative solutions already installed worldwide.\n No direct discussion on the losses implied by adopting a conservative \"all topside approach\" for green field development project (or even a revamp for a brown field) is easily found on literature. This paper addresses these losses and highlights the benefits of taking subsea water removal into account when studying a production development project either during green fields development planning or brown fields revamping planning. Of course, these benefits should be balanced against any sound concerns on subsea processing. Subsea Equipment and System Suppliers, on the other hand, have to focus on simplicity and robustness, aiming to offer to the Operators cost effective subsea processing solutions.","PeriodicalId":10968,"journal":{"name":"Day 3 Wed, May 08, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Subsea Separation: The Way to Go for Increasing Water Production and NPV Optimization\",\"authors\":\"Carlos Alberto Capela Moraes, S. Shaiek\",\"doi\":\"10.4043/29527-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n There are still few subsea water removal systems, but looking at deeper offshore scenario the conventional topside water removal and treatment configuration is not acceptable, either from the economic or technical point of view. Increasing water cuts penalizes field revenue outcome along its productive life. The paper will demonstrate on several business cases that the best way to reduce these penalties is to get rid of water as soon as possible with subsea solutions.\\n We start discussing the economics of a subsea primary separation station. In this focus, some examples based on hypothetical production curves show the gains in terms of increased total volume of recoverable oil that can be obtained with the approach of using a subsea water removal system, compared to conventional topside produced water management system. Some sensitivity on the influence of the parameter hypothetical values used in the analysis is also presented and they show that this trend is indisputable. It can also be concluded that these advantages increase with increasing water depth.\\n The main conclusion of the paper is that the traditional all topside water management system, although being one business case for a field development, it is not the best configuration and it leads to lower net present value (NPV) for the whole project, since some oil is left behind due to increasing water cuts, and subsea water removal improves NPV of the project. Then it is discussed the question on why, being this the case, not much Operators consider this alternative configuration for production development. On this focus, the paper also discusses the main concerns regarding a subsea processing installation, from the point of view of operation, maintenance and reliability – justifiable concerns that have to be addressed by subsea system suppliers. Finally, it is presented the optimized concept of configuration for subsea water removal, treatment and re-injection system, whose first version was already object of an OTC presentation in 2015 (OTC-25934-MS), and since then it has been further developed and optimized through Joint Industry Projects with Operators. It is shown that this system is conceptually designed in order to increase robustness regarding a wide diversity of field conditions and production issues, requiring low maintenance. This analysis is made comparing SpoolSep concept with the alternative solutions already installed worldwide.\\n No direct discussion on the losses implied by adopting a conservative \\\"all topside approach\\\" for green field development project (or even a revamp for a brown field) is easily found on literature. This paper addresses these losses and highlights the benefits of taking subsea water removal into account when studying a production development project either during green fields development planning or brown fields revamping planning. Of course, these benefits should be balanced against any sound concerns on subsea processing. Subsea Equipment and System Suppliers, on the other hand, have to focus on simplicity and robustness, aiming to offer to the Operators cost effective subsea processing solutions.\",\"PeriodicalId\":10968,\"journal\":{\"name\":\"Day 3 Wed, May 08, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, May 08, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/29527-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, May 08, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29527-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目前仍然很少有海底除水系统,但从经济或技术角度来看,传统的上层除水和处理配置都是不可接受的。含水率的增加会影响油田在生产周期内的收益。本文将通过几个商业案例证明,减少这些损失的最佳方法是使用海底解决方案尽快去除水。我们开始讨论海底一次分离站的经济性。在这方面,基于假设生产曲线的一些示例显示,与传统的上层采出水管理系统相比,使用海底除水系统可以获得更多的可采油总量。对分析中所使用的参数假设值的影响也有一定的敏感性,表明这种趋势是无可争辩的。还可以得出结论,这些优势随着水深的增加而增加。本文的主要结论是,传统的全上层水管理系统虽然是油田开发的一个商业案例,但它并不是最佳配置,而且会导致整个项目的净现值(NPV)降低,因为随着含水率的增加,会留下一些油,而海底除水可以提高项目的NPV。然后讨论了为什么在这种情况下,没有多少作业者考虑将这种替代配置用于生产开发。在此基础上,本文还从操作、维护和可靠性的角度讨论了海底处理装置的主要问题,这些都是海底系统供应商必须解决的合理问题。最后,介绍了海底除水、处理和回注系统的优化配置概念,该系统的第一个版本已于2015年在OTC上发布(OTC-25934- ms),此后通过与运营商的联合行业项目进一步开发和优化。结果表明,该系统的概念设计是为了提高对各种现场条件和生产问题的稳健性,需要较少的维护。该分析是将SpoolSep概念与世界范围内已经安装的替代解决方案进行比较。在文献中很难找到对采用保守的“全上层方法”进行绿地开发项目(甚至对棕色地块进行改造)所隐含的损失的直接讨论。本文讨论了这些损失,并强调了在研究生产开发项目时,无论是在绿油田开发规划还是棕油田改造规划中,都要考虑到海底除水的好处。当然,这些好处应该与海底处理的任何问题相平衡。另一方面,海底设备和系统供应商必须关注简单性和稳健性,旨在为运营商提供具有成本效益的海底处理解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Subsea Separation: The Way to Go for Increasing Water Production and NPV Optimization
There are still few subsea water removal systems, but looking at deeper offshore scenario the conventional topside water removal and treatment configuration is not acceptable, either from the economic or technical point of view. Increasing water cuts penalizes field revenue outcome along its productive life. The paper will demonstrate on several business cases that the best way to reduce these penalties is to get rid of water as soon as possible with subsea solutions. We start discussing the economics of a subsea primary separation station. In this focus, some examples based on hypothetical production curves show the gains in terms of increased total volume of recoverable oil that can be obtained with the approach of using a subsea water removal system, compared to conventional topside produced water management system. Some sensitivity on the influence of the parameter hypothetical values used in the analysis is also presented and they show that this trend is indisputable. It can also be concluded that these advantages increase with increasing water depth. The main conclusion of the paper is that the traditional all topside water management system, although being one business case for a field development, it is not the best configuration and it leads to lower net present value (NPV) for the whole project, since some oil is left behind due to increasing water cuts, and subsea water removal improves NPV of the project. Then it is discussed the question on why, being this the case, not much Operators consider this alternative configuration for production development. On this focus, the paper also discusses the main concerns regarding a subsea processing installation, from the point of view of operation, maintenance and reliability – justifiable concerns that have to be addressed by subsea system suppliers. Finally, it is presented the optimized concept of configuration for subsea water removal, treatment and re-injection system, whose first version was already object of an OTC presentation in 2015 (OTC-25934-MS), and since then it has been further developed and optimized through Joint Industry Projects with Operators. It is shown that this system is conceptually designed in order to increase robustness regarding a wide diversity of field conditions and production issues, requiring low maintenance. This analysis is made comparing SpoolSep concept with the alternative solutions already installed worldwide. No direct discussion on the losses implied by adopting a conservative "all topside approach" for green field development project (or even a revamp for a brown field) is easily found on literature. This paper addresses these losses and highlights the benefits of taking subsea water removal into account when studying a production development project either during green fields development planning or brown fields revamping planning. Of course, these benefits should be balanced against any sound concerns on subsea processing. Subsea Equipment and System Suppliers, on the other hand, have to focus on simplicity and robustness, aiming to offer to the Operators cost effective subsea processing solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Offshore Liquefied Natural Gas LNG and Monetization A Case Study of an Independent Third Party Review of Subsea HPHT Technologies Designed and Qualified by a Joint Development Agreement Optimized SMR Process with Advanced Vessel Economizer Experimental and Numerical Studies on the Drift Velocity of Two-Phase Gas and High-Viscosity-Liquid Slug Flow in Pipelines Applied Optimal Reservoir Management: A Field Case Experience in Campos Basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1