Phanindra Tallapragada, Jake Buzhardt, Robert W. Seney
{"title":"被动跳跃机制","authors":"Phanindra Tallapragada, Jake Buzhardt, Robert W. Seney","doi":"10.1115/dscc2019-9194","DOIUrl":null,"url":null,"abstract":"\n In this paper we present a novel unactuated mechanism that utilizes gravity to jump. The passive jumper is a hoop whose center of mass does not coincide with its geometric center. When the hoop rolls down an inclined plane, the center of mass of the hoop moves along a cycloid. As the hoop gains speed moving down the inclined plane, the normal reaction between the hoop and the plane becomes insufficient to ensure contact between the hoop and the plane. This allows the hoop to ‘jump’. Experiments and analysis show that such a jump can be significant, with the jump height from the plane being as high as one body length (diameter) of the hoop. The mechanics of the passive jumping hoop powered by gravity investigated in this paper can inspire the design of actuated jumping robots that can both roll and jump.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Passive Jumping Mechanism\",\"authors\":\"Phanindra Tallapragada, Jake Buzhardt, Robert W. Seney\",\"doi\":\"10.1115/dscc2019-9194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper we present a novel unactuated mechanism that utilizes gravity to jump. The passive jumper is a hoop whose center of mass does not coincide with its geometric center. When the hoop rolls down an inclined plane, the center of mass of the hoop moves along a cycloid. As the hoop gains speed moving down the inclined plane, the normal reaction between the hoop and the plane becomes insufficient to ensure contact between the hoop and the plane. This allows the hoop to ‘jump’. Experiments and analysis show that such a jump can be significant, with the jump height from the plane being as high as one body length (diameter) of the hoop. The mechanics of the passive jumping hoop powered by gravity investigated in this paper can inspire the design of actuated jumping robots that can both roll and jump.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
In this paper we present a novel unactuated mechanism that utilizes gravity to jump. The passive jumper is a hoop whose center of mass does not coincide with its geometric center. When the hoop rolls down an inclined plane, the center of mass of the hoop moves along a cycloid. As the hoop gains speed moving down the inclined plane, the normal reaction between the hoop and the plane becomes insufficient to ensure contact between the hoop and the plane. This allows the hoop to ‘jump’. Experiments and analysis show that such a jump can be significant, with the jump height from the plane being as high as one body length (diameter) of the hoop. The mechanics of the passive jumping hoop powered by gravity investigated in this paper can inspire the design of actuated jumping robots that can both roll and jump.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.