层状氧硫属化合物BiCuOCh (Ch = S, Se, Te)的结构特征和热电性能:有前途的绿色能源转换材料

M. C., R. Mulla, H. R, Sachith Nayak, Y. N, Suraj L, M. Selvaraj, Vishal Chaudhary, A. Khosla
{"title":"层状氧硫属化合物BiCuOCh (Ch = S, Se, Te)的结构特征和热电性能:有前途的绿色能源转换材料","authors":"M. C., R. Mulla, H. R, Sachith Nayak, Y. N, Suraj L, M. Selvaraj, Vishal Chaudhary, A. Khosla","doi":"10.1080/14328917.2022.2140784","DOIUrl":null,"url":null,"abstract":"ABSTRACT Thermoelectric (TE) technology is considered as one of the promising, eco-friendly, simple and sustainable technologies to generate electricity directly from waste heat and concentrated solar heat. The present TE generators/devices are operating with very low conversion efficiency . Therefore, understanding the electronic and thermal properties of TE materials plays a vital role in enhancing device efficiency. In addition, non-toxic and abundant materials are also important to implement TE technology for large-scale applications. In the past few decades, a lot of research has been done on finding various oxide-based thermoelectric materials. Among many oxide-based materials, oxychalcogenides have received a lot of attention due to their useful thermoelectric properties. This review provides insights into thermoelectrics of selected inorganic oxychalcogenides. A comprehensive discussion has also been made on recent advances in preparation methods and various approaches such as doping, alloying, co-doping techniques adopted for design and optimisation of the TE materials.","PeriodicalId":18235,"journal":{"name":"Materials Research Innovations","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into structural features and thermoelectric properties of layered oxychalcogenides, BiCuOCh (Ch = S, Se, Te): promising green materials for energy conversion\",\"authors\":\"M. C., R. Mulla, H. R, Sachith Nayak, Y. N, Suraj L, M. Selvaraj, Vishal Chaudhary, A. Khosla\",\"doi\":\"10.1080/14328917.2022.2140784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Thermoelectric (TE) technology is considered as one of the promising, eco-friendly, simple and sustainable technologies to generate electricity directly from waste heat and concentrated solar heat. The present TE generators/devices are operating with very low conversion efficiency . Therefore, understanding the electronic and thermal properties of TE materials plays a vital role in enhancing device efficiency. In addition, non-toxic and abundant materials are also important to implement TE technology for large-scale applications. In the past few decades, a lot of research has been done on finding various oxide-based thermoelectric materials. Among many oxide-based materials, oxychalcogenides have received a lot of attention due to their useful thermoelectric properties. This review provides insights into thermoelectrics of selected inorganic oxychalcogenides. A comprehensive discussion has also been made on recent advances in preparation methods and various approaches such as doping, alloying, co-doping techniques adopted for design and optimisation of the TE materials.\",\"PeriodicalId\":18235,\"journal\":{\"name\":\"Materials Research Innovations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Innovations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14328917.2022.2140784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14328917.2022.2140784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

热电(TE)技术被认为是一种有前途的、环保的、简单的和可持续的技术,可以直接利用废热和集中的太阳能来发电。目前的发电机组/设备的转换效率很低。因此,了解TE材料的电子和热性能对提高器件效率至关重要。此外,无毒和丰富的材料对于实现TE技术的大规模应用也很重要。在过去的几十年里,人们在寻找各种氧化物基热电材料方面做了大量的研究。在众多氧化物基材料中,氧硫族化合物因其有益的热电性质而受到广泛关注。本文综述了无机氧硫属化合物的热电学研究进展。对制备方法的最新进展以及用于TE材料设计和优化的掺杂、合金化、共掺杂技术等各种方法进行了全面的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insights into structural features and thermoelectric properties of layered oxychalcogenides, BiCuOCh (Ch = S, Se, Te): promising green materials for energy conversion
ABSTRACT Thermoelectric (TE) technology is considered as one of the promising, eco-friendly, simple and sustainable technologies to generate electricity directly from waste heat and concentrated solar heat. The present TE generators/devices are operating with very low conversion efficiency . Therefore, understanding the electronic and thermal properties of TE materials plays a vital role in enhancing device efficiency. In addition, non-toxic and abundant materials are also important to implement TE technology for large-scale applications. In the past few decades, a lot of research has been done on finding various oxide-based thermoelectric materials. Among many oxide-based materials, oxychalcogenides have received a lot of attention due to their useful thermoelectric properties. This review provides insights into thermoelectrics of selected inorganic oxychalcogenides. A comprehensive discussion has also been made on recent advances in preparation methods and various approaches such as doping, alloying, co-doping techniques adopted for design and optimisation of the TE materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Innovations
Materials Research Innovations 工程技术-材料科学:综合
CiteScore
5.20
自引率
0.00%
发文量
38
审稿时长
2.8 months
期刊介绍: Materials Research Innovations covers all areas of materials research with a particular interest in synthesis, processing, and properties from the nanoscale to the microscale to the bulk. Coverage includes all classes of material – ceramics, metals, and polymers; semiconductors and other functional materials; organic and inorganic materials – alone or in combination as composites. Innovation in composition and processing to impart special properties to bulk materials and coatings, and for innovative applications in technology, represents a strong focus. The journal attempts to balance enduring themes of science and engineering with the innovation provided by such areas of research activity.
期刊最新文献
The impact of zinc ions on electrode material for energy storage in solvothermal-synthesised graphene-zinc oxide nanocomposites Enhanced non-enzymatic multicomponent detection via one-step hydrothermal synthesis of widely dispersed Zn-SnO2 nanoparticles on nitrogen-doped reduced graphene oxide Fluconazole adsorption and release study using KIT-6 for targeted and controlled drug delivery system Effect of precursor pH on the electrochemically synthesised barium titanium sulphide (BaTiS) material for photovoltaic application Hydroxyapatite coating of TiNi shape memory alloy via Electrophoretic Deposition (EPD)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1