超算术分析的定理和几乎定理

James S. Barnes, Jun Le Goh, R. Shore
{"title":"超算术分析的定理和几乎定理","authors":"James S. Barnes, Jun Le Goh, R. Shore","doi":"10.1017/bsl.2021.70","DOIUrl":null,"url":null,"abstract":"Abstract Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood in the realms of reverse mathematics and recursion-theoretic complexity. They lie above all the fixed (recursive) iterations of the Turing jump but below ATR \n$_{0}$\n (and so \n$\\Pi _{1}^{1}$\n -CA \n$_{0}$\n or the hyperjump). There is a long history of proof-theoretic principles which are THAs. Until the papers reported on in this communication, there was only one mathematical example. Barnes, Goh, and Shore [1] analyze an array of ubiquity theorems in graph theory descended from Halin’s [9] work on rays in graphs. They seem to be typical applications of ACA \n$_{0}$\n but are actually THAs. These results answer Question 30 of Montalbán’s Open Questions in Reverse Mathematics [19] and supply several other natural principles of different and unusual levels of complexity. This work led in [25] to a new neighborhood of the reverse mathematical zoo: almost theorems of hyperarithmetic analysis (ATHAs). When combined with ACA \n$_{0}$\n they are THAs but on their own are very weak. Denizens both mathematical and logical are provided. Generalizations of several conservativity classes ( \n$\\Pi _{1}^{1}$\n , r- \n$\\Pi _{1}^{1}$\n , and Tanaka) are defined and these ATHAs as well as many other principles are shown to be conservative over RCA \n$_{0}$\n in all these senses and weak in other recursion-theoretic ways as well. These results answer a question raised by Hirschfeldt and reported in [19] by providing a long list of pairs of principles one of which is very weak over RCA \n$_{0}$\n but over ACA \n$_{0}$\n is equivalent to the other which may be strong (THA) or very strong going up a standard hierarchy and at the end being stronger than full second-order arithmetic.","PeriodicalId":22265,"journal":{"name":"The Bulletin of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THEOREMS OF HYPERARITHMETIC ANALYSIS AND ALMOST THEOREMS OF HYPERARITHMETIC ANALYSIS\",\"authors\":\"James S. Barnes, Jun Le Goh, R. Shore\",\"doi\":\"10.1017/bsl.2021.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood in the realms of reverse mathematics and recursion-theoretic complexity. They lie above all the fixed (recursive) iterations of the Turing jump but below ATR \\n$_{0}$\\n (and so \\n$\\\\Pi _{1}^{1}$\\n -CA \\n$_{0}$\\n or the hyperjump). There is a long history of proof-theoretic principles which are THAs. Until the papers reported on in this communication, there was only one mathematical example. Barnes, Goh, and Shore [1] analyze an array of ubiquity theorems in graph theory descended from Halin’s [9] work on rays in graphs. They seem to be typical applications of ACA \\n$_{0}$\\n but are actually THAs. These results answer Question 30 of Montalbán’s Open Questions in Reverse Mathematics [19] and supply several other natural principles of different and unusual levels of complexity. This work led in [25] to a new neighborhood of the reverse mathematical zoo: almost theorems of hyperarithmetic analysis (ATHAs). When combined with ACA \\n$_{0}$\\n they are THAs but on their own are very weak. Denizens both mathematical and logical are provided. Generalizations of several conservativity classes ( \\n$\\\\Pi _{1}^{1}$\\n , r- \\n$\\\\Pi _{1}^{1}$\\n , and Tanaka) are defined and these ATHAs as well as many other principles are shown to be conservative over RCA \\n$_{0}$\\n in all these senses and weak in other recursion-theoretic ways as well. These results answer a question raised by Hirschfeldt and reported in [19] by providing a long list of pairs of principles one of which is very weak over RCA \\n$_{0}$\\n but over ACA \\n$_{0}$\\n is equivalent to the other which may be strong (THA) or very strong going up a standard hierarchy and at the end being stronger than full second-order arithmetic.\",\"PeriodicalId\":22265,\"journal\":{\"name\":\"The Bulletin of Symbolic Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Bulletin of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/bsl.2021.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Bulletin of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/bsl.2021.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在逆向数学和递归理论的复杂性领域中,超算术分析定理占据了一个不寻常的领域。它们位于图灵跳跃的所有固定(递归)迭代之上,但低于ATR $_{0}$(因此$\Pi _{1}^{1}$ -CA $_{0}$或超跳跃)。证明理论的原理有很长的历史。在这篇论文发表之前,只有一个数学例子。Barnes、Goh和Shore[1]分析了一系列图论中的泛在性定理,这些定理源自Halin[9]关于图中的射线的研究。它们似乎是ACA $_{0}$的典型应用,但实际上是tha。这些结果回答了Montalbán逆向数学开放问题[19]中的问题30,并提供了其他几种不同和不寻常的复杂程度的自然原理。这项工作在[25]中引出了反向数学动物园的一个新领域:超算术分析几乎定理(ATHAs)。当与ACA $_{0}$结合时,它们是tha,但单独使用时非常弱。提供了数学和逻辑的居民。定义了几个保守性类($\Pi _{1}^{1}$, r- $\Pi _{1} $和Tanaka)的推广,并且证明了这些ATHAs以及许多其他原理在RCA $_{0}$上在所有这些意义上是保守的,并且在其他递归理论方式上也是弱的。这些结果回答了Hirschfeldt提出的问题,并在[19]中报告,提供了一长串原则对,其中一个在RCA $_{0}$上非常弱,但在ACA $_{0}$上等效于另一个可能是强的(THA)或非常强的,在一个标准层次结构中,最终比完整的二阶算法更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
THEOREMS OF HYPERARITHMETIC ANALYSIS AND ALMOST THEOREMS OF HYPERARITHMETIC ANALYSIS
Abstract Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood in the realms of reverse mathematics and recursion-theoretic complexity. They lie above all the fixed (recursive) iterations of the Turing jump but below ATR $_{0}$ (and so $\Pi _{1}^{1}$ -CA $_{0}$ or the hyperjump). There is a long history of proof-theoretic principles which are THAs. Until the papers reported on in this communication, there was only one mathematical example. Barnes, Goh, and Shore [1] analyze an array of ubiquity theorems in graph theory descended from Halin’s [9] work on rays in graphs. They seem to be typical applications of ACA $_{0}$ but are actually THAs. These results answer Question 30 of Montalbán’s Open Questions in Reverse Mathematics [19] and supply several other natural principles of different and unusual levels of complexity. This work led in [25] to a new neighborhood of the reverse mathematical zoo: almost theorems of hyperarithmetic analysis (ATHAs). When combined with ACA $_{0}$ they are THAs but on their own are very weak. Denizens both mathematical and logical are provided. Generalizations of several conservativity classes ( $\Pi _{1}^{1}$ , r- $\Pi _{1}^{1}$ , and Tanaka) are defined and these ATHAs as well as many other principles are shown to be conservative over RCA $_{0}$ in all these senses and weak in other recursion-theoretic ways as well. These results answer a question raised by Hirschfeldt and reported in [19] by providing a long list of pairs of principles one of which is very weak over RCA $_{0}$ but over ACA $_{0}$ is equivalent to the other which may be strong (THA) or very strong going up a standard hierarchy and at the end being stronger than full second-order arithmetic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
POUR-EL’S LANDSCAPE CATEGORICAL QUANTIFICATION POINCARÉ-WEYL’S PREDICATIVITY: GOING BEYOND A TOPOLOGICAL APPROACH TO UNDEFINABILITY IN ALGEBRAIC EXTENSIONS OF John MacFarlane, Philosophical Logic: A Contemporary Introduction, Routledge Contemporary Introductions to Philosophy, Routledge, New York, and London, 2021, xx + 238 pp.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1