{"title":"基于生成对抗网络的巡逻机器人异常发现","authors":"W. Lawson, Esube Bekele, Keith Sullivan","doi":"10.1109/CVPRW.2017.68","DOIUrl":null,"url":null,"abstract":"We present an anomaly detection system based on an autonomous robot performing a patrol task. Using a generative adversarial network (GAN), we compare the robot's current view with a learned model of normality. Our preliminary experimental results show that the approach is well suited for anomaly detection, providing efficient results with a low false positive rate.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"1 1","pages":"484-485"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Finding Anomalies with Generative Adversarial Networks for a Patrolbot\",\"authors\":\"W. Lawson, Esube Bekele, Keith Sullivan\",\"doi\":\"10.1109/CVPRW.2017.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an anomaly detection system based on an autonomous robot performing a patrol task. Using a generative adversarial network (GAN), we compare the robot's current view with a learned model of normality. Our preliminary experimental results show that the approach is well suited for anomaly detection, providing efficient results with a low false positive rate.\",\"PeriodicalId\":6668,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"1 1\",\"pages\":\"484-485\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2017.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finding Anomalies with Generative Adversarial Networks for a Patrolbot
We present an anomaly detection system based on an autonomous robot performing a patrol task. Using a generative adversarial network (GAN), we compare the robot's current view with a learned model of normality. Our preliminary experimental results show that the approach is well suited for anomaly detection, providing efficient results with a low false positive rate.