{"title":"车辆横向运动控制中最优平顺性的预测避碰控制","authors":"Jin Ho Yang, Dae Jung Kim, C. Chung","doi":"10.23919/ICCAS50221.2020.9268424","DOIUrl":null,"url":null,"abstract":"This study aims to propose how autonomous vehicle overtakes an obstacle with model predictive control and makes a lateral ride comfortability by optimizing a jerk in a lateral direction. In this paper, we conducted a case study on collision avoidance in a waypoint tracking situation. To avoid the obstacle, we proposed a desired lateral offset from the global route and used the offset as a reference for avoidance. Then, we defined a quadratic cost function considering the jerk to minimize a motion sickness during the avoidance maneuver. To verify the method, we executed a computational simulation using actual waypoint data. As a result, we observed that the proposed scheme has more comfortability for obstacle avoidance than the method without optimizing the jerk.","PeriodicalId":6732,"journal":{"name":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","volume":"178 1","pages":"737-742"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predictive Collision Avoidance Control with Optimized Ride Comfort in Vehicle Lateral Motion Control\",\"authors\":\"Jin Ho Yang, Dae Jung Kim, C. Chung\",\"doi\":\"10.23919/ICCAS50221.2020.9268424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to propose how autonomous vehicle overtakes an obstacle with model predictive control and makes a lateral ride comfortability by optimizing a jerk in a lateral direction. In this paper, we conducted a case study on collision avoidance in a waypoint tracking situation. To avoid the obstacle, we proposed a desired lateral offset from the global route and used the offset as a reference for avoidance. Then, we defined a quadratic cost function considering the jerk to minimize a motion sickness during the avoidance maneuver. To verify the method, we executed a computational simulation using actual waypoint data. As a result, we observed that the proposed scheme has more comfortability for obstacle avoidance than the method without optimizing the jerk.\",\"PeriodicalId\":6732,\"journal\":{\"name\":\"2020 20th International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"178 1\",\"pages\":\"737-742\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 20th International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICCAS50221.2020.9268424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS50221.2020.9268424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predictive Collision Avoidance Control with Optimized Ride Comfort in Vehicle Lateral Motion Control
This study aims to propose how autonomous vehicle overtakes an obstacle with model predictive control and makes a lateral ride comfortability by optimizing a jerk in a lateral direction. In this paper, we conducted a case study on collision avoidance in a waypoint tracking situation. To avoid the obstacle, we proposed a desired lateral offset from the global route and used the offset as a reference for avoidance. Then, we defined a quadratic cost function considering the jerk to minimize a motion sickness during the avoidance maneuver. To verify the method, we executed a computational simulation using actual waypoint data. As a result, we observed that the proposed scheme has more comfortability for obstacle avoidance than the method without optimizing the jerk.