面向物联网数据交易的加密货币交易闭环混合监管框架

IF 3.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Internet of Things Pub Date : 2022-12-05 DOI:10.1145/3568171
Liushun Zhao, Deke Guo, Junjie Xie, Lailong Luo, Yulong Shen
{"title":"面向物联网数据交易的加密货币交易闭环混合监管框架","authors":"Liushun Zhao, Deke Guo, Junjie Xie, Lailong Luo, Yulong Shen","doi":"10.1145/3568171","DOIUrl":null,"url":null,"abstract":"The Device-as-a-service (DaaS) Internet of Things (IoT) business model enables distributed IoT devices to sell collected data to other devices, paving the way for machine-to-machine (M2M) economy applications. Cryptocurrencies are widely used by various IoT devices to undertake the main settlement and payment task in the M2M economy. However, the cryptocurrency market, which lacks effective supervision, has fluctuated wildly in the past few years. These fluctuations are breeding grounds for arbitrage in IoT data trading. Therefore, a practical cryptocurrency market supervision framework is very imperative in the process of IoT data trading to ensure that the trading is completed safely and fairly. The difficulty stems from how to combine these unlabeled daily trading data with supervision strategies to punish abnormal users, who disrupt the data trading market in IoT. In this article, we propose a closed-loop hybrid supervision framework based on the unsupervised anomaly detection to solve this problem. The core is to design the multi-modal unsupervised anomaly detection methods on trading prices to identify malicious users. We then design a dedicated control strategy with three levels to defend against various abnormal behaviors, according to the detection results. Furthermore, to guarantee the reliability of this framework, we evaluate the detection rate, accuracy, precision, and time consumption of single-modal and multi-modal detection methods and the contrast algorithm Adaptive KDE [19]. Finally, an effective prototype framework for supervising is established. The extensive evaluations prove that our supervision framework greatly reduces IoT data trading risks and losses.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"16 1","pages":"1 - 26"},"PeriodicalIF":3.5000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Closed-loop Hybrid Supervision Framework of Cryptocurrency Transactions for Data Trading in IoT\",\"authors\":\"Liushun Zhao, Deke Guo, Junjie Xie, Lailong Luo, Yulong Shen\",\"doi\":\"10.1145/3568171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Device-as-a-service (DaaS) Internet of Things (IoT) business model enables distributed IoT devices to sell collected data to other devices, paving the way for machine-to-machine (M2M) economy applications. Cryptocurrencies are widely used by various IoT devices to undertake the main settlement and payment task in the M2M economy. However, the cryptocurrency market, which lacks effective supervision, has fluctuated wildly in the past few years. These fluctuations are breeding grounds for arbitrage in IoT data trading. Therefore, a practical cryptocurrency market supervision framework is very imperative in the process of IoT data trading to ensure that the trading is completed safely and fairly. The difficulty stems from how to combine these unlabeled daily trading data with supervision strategies to punish abnormal users, who disrupt the data trading market in IoT. In this article, we propose a closed-loop hybrid supervision framework based on the unsupervised anomaly detection to solve this problem. The core is to design the multi-modal unsupervised anomaly detection methods on trading prices to identify malicious users. We then design a dedicated control strategy with three levels to defend against various abnormal behaviors, according to the detection results. Furthermore, to guarantee the reliability of this framework, we evaluate the detection rate, accuracy, precision, and time consumption of single-modal and multi-modal detection methods and the contrast algorithm Adaptive KDE [19]. Finally, an effective prototype framework for supervising is established. The extensive evaluations prove that our supervision framework greatly reduces IoT data trading risks and losses.\",\"PeriodicalId\":29764,\"journal\":{\"name\":\"ACM Transactions on Internet of Things\",\"volume\":\"16 1\",\"pages\":\"1 - 26\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3568171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

设备即服务(DaaS)物联网(IoT)商业模式使分布式物联网设备能够将收集到的数据出售给其他设备,为机器对机器(M2M)经济应用铺平了道路。加密货币被各种物联网设备广泛使用,承担M2M经济中的主要结算和支付任务。然而,由于缺乏有效监管,加密货币市场在过去几年里波动很大。这些波动是物联网数据交易套利的温床。因此,在物联网数据交易过程中,一个实用的加密货币市场监管框架是非常必要的,以确保交易安全公平地完成。难点在于如何将这些未标记的日常交易数据与监管策略相结合,以惩罚扰乱物联网数据交易市场的异常用户。本文提出了一种基于无监督异常检测的闭环混合监督框架来解决这一问题。核心是设计交易价格的多模态无监督异常检测方法来识别恶意用户。然后,根据检测结果,我们设计了一个专用的三个级别的控制策略来防御各种异常行为。此外,为了保证该框架的可靠性,我们评估了单模态和多模态检测方法以及对比度算法Adaptive KDE的检出率、准确率、精度和耗时[19]。最后,建立了一个有效的监督原型框架。广泛的评估证明,我们的监管框架大大降低了物联网数据交易的风险和损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Closed-loop Hybrid Supervision Framework of Cryptocurrency Transactions for Data Trading in IoT
The Device-as-a-service (DaaS) Internet of Things (IoT) business model enables distributed IoT devices to sell collected data to other devices, paving the way for machine-to-machine (M2M) economy applications. Cryptocurrencies are widely used by various IoT devices to undertake the main settlement and payment task in the M2M economy. However, the cryptocurrency market, which lacks effective supervision, has fluctuated wildly in the past few years. These fluctuations are breeding grounds for arbitrage in IoT data trading. Therefore, a practical cryptocurrency market supervision framework is very imperative in the process of IoT data trading to ensure that the trading is completed safely and fairly. The difficulty stems from how to combine these unlabeled daily trading data with supervision strategies to punish abnormal users, who disrupt the data trading market in IoT. In this article, we propose a closed-loop hybrid supervision framework based on the unsupervised anomaly detection to solve this problem. The core is to design the multi-modal unsupervised anomaly detection methods on trading prices to identify malicious users. We then design a dedicated control strategy with three levels to defend against various abnormal behaviors, according to the detection results. Furthermore, to guarantee the reliability of this framework, we evaluate the detection rate, accuracy, precision, and time consumption of single-modal and multi-modal detection methods and the contrast algorithm Adaptive KDE [19]. Finally, an effective prototype framework for supervising is established. The extensive evaluations prove that our supervision framework greatly reduces IoT data trading risks and losses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.70%
发文量
0
期刊最新文献
Introduction to the Special Issue on Wireless Sensing for IoT Special Issue on Wireless Sensing for IoT: A Word from the Editor-in-Chief Resilient Intermediary‐Based Key Exchange Protocol for IoT A Two-Mode, Adaptive Security Framework for Smart Home Security Applications Online learning for dynamic impending collision prediction using FMCW radar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1