Ilias Iliadis, Linus Jordan, Mark Lantz, Slavisa Sarafijanovic
{"title":"磁带库系统的性能评估","authors":"Ilias Iliadis, Linus Jordan, Mark Lantz, Slavisa Sarafijanovic","doi":"10.1016/j.peva.2022.102312","DOIUrl":null,"url":null,"abstract":"<div><p><span>Magnetic tape provides a cost-effective way to retain the exponentially increasing volumes of data being produced. The low cost per gigabyte and the low energy consumption<span> render tape a preferred option over hard disk drives and flash for infrequently accessed data. Assessing the performance of tape library systems is central to achieving appropriate storage provisioning and dimensioning. Performance is affected by the number and the operational characteristics of the tape drives and the </span></span>robotic arms, and the mount and unmount policies deployed. In this paper, we develop a novel analytical model that accurately captures the principal aspects of tape library operation. Several relevant performance measures including the mean waiting time and the mount/unmount rates are derived. The model provides useful insights into the behavior of the tape libraries and yields results that enable a better understanding of the design tradeoffs. The validity of the model developed is confirmed by demonstrating a good agreement of the predicted performance with that obtained by simulation across various configurations. To mitigate the burden on the robotic mechanism, a scheme of accumulating multiple requests before sending them to the tape library is proposed and studied.</p></div>","PeriodicalId":19964,"journal":{"name":"Performance Evaluation","volume":"157 ","pages":"Article 102312"},"PeriodicalIF":1.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of tape library systems\",\"authors\":\"Ilias Iliadis, Linus Jordan, Mark Lantz, Slavisa Sarafijanovic\",\"doi\":\"10.1016/j.peva.2022.102312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Magnetic tape provides a cost-effective way to retain the exponentially increasing volumes of data being produced. The low cost per gigabyte and the low energy consumption<span> render tape a preferred option over hard disk drives and flash for infrequently accessed data. Assessing the performance of tape library systems is central to achieving appropriate storage provisioning and dimensioning. Performance is affected by the number and the operational characteristics of the tape drives and the </span></span>robotic arms, and the mount and unmount policies deployed. In this paper, we develop a novel analytical model that accurately captures the principal aspects of tape library operation. Several relevant performance measures including the mean waiting time and the mount/unmount rates are derived. The model provides useful insights into the behavior of the tape libraries and yields results that enable a better understanding of the design tradeoffs. The validity of the model developed is confirmed by demonstrating a good agreement of the predicted performance with that obtained by simulation across various configurations. To mitigate the burden on the robotic mechanism, a scheme of accumulating multiple requests before sending them to the tape library is proposed and studied.</p></div>\",\"PeriodicalId\":19964,\"journal\":{\"name\":\"Performance Evaluation\",\"volume\":\"157 \",\"pages\":\"Article 102312\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance Evaluation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166531622000232\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166531622000232","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Magnetic tape provides a cost-effective way to retain the exponentially increasing volumes of data being produced. The low cost per gigabyte and the low energy consumption render tape a preferred option over hard disk drives and flash for infrequently accessed data. Assessing the performance of tape library systems is central to achieving appropriate storage provisioning and dimensioning. Performance is affected by the number and the operational characteristics of the tape drives and the robotic arms, and the mount and unmount policies deployed. In this paper, we develop a novel analytical model that accurately captures the principal aspects of tape library operation. Several relevant performance measures including the mean waiting time and the mount/unmount rates are derived. The model provides useful insights into the behavior of the tape libraries and yields results that enable a better understanding of the design tradeoffs. The validity of the model developed is confirmed by demonstrating a good agreement of the predicted performance with that obtained by simulation across various configurations. To mitigate the burden on the robotic mechanism, a scheme of accumulating multiple requests before sending them to the tape library is proposed and studied.
期刊介绍:
Performance Evaluation functions as a leading journal in the area of modeling, measurement, and evaluation of performance aspects of computing and communication systems. As such, it aims to present a balanced and complete view of the entire Performance Evaluation profession. Hence, the journal is interested in papers that focus on one or more of the following dimensions:
-Define new performance evaluation tools, including measurement and monitoring tools as well as modeling and analytic techniques
-Provide new insights into the performance of computing and communication systems
-Introduce new application areas where performance evaluation tools can play an important role and creative new uses for performance evaluation tools.
More specifically, common application areas of interest include the performance of:
-Resource allocation and control methods and algorithms (e.g. routing and flow control in networks, bandwidth allocation, processor scheduling, memory management)
-System architecture, design and implementation
-Cognitive radio
-VANETs
-Social networks and media
-Energy efficient ICT
-Energy harvesting
-Data centers
-Data centric networks
-System reliability
-System tuning and capacity planning
-Wireless and sensor networks
-Autonomic and self-organizing systems
-Embedded systems
-Network science