基于随机森林的非线性改进特征提取与选择的故障分类

R. Fezai, Kais Bouzrara, M. Mansouri, H. Nounou, M. Nounou, M. Trabelsi
{"title":"基于随机森林的非线性改进特征提取与选择的故障分类","authors":"R. Fezai, Kais Bouzrara, M. Mansouri, H. Nounou, M. Nounou, M. Trabelsi","doi":"10.1109/SSD52085.2021.9429351","DOIUrl":null,"url":null,"abstract":"In this paper, Interval Gaussian Process Regression (IGPR)-based Random Forest (RF) proposed for fault detection and diagnosis (FDD) due to its effectiveness in handling uncertain industrial process data, which are often with high nonlinearities and strong correlations. This technique aims to extract the features from raw data using IGPR technique. Then, the interval mean vector and the interval variance matrix obtained from IGPR technique are used as inputs to the Random Forest (RF) classifier. The results show the effectiveness of the features and the classifiers in detection of faults of Wind Energy Conversion (WEC) Systems.","PeriodicalId":6799,"journal":{"name":"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"68 1","pages":"601-606"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random forest-based nonlinear improved feature extraction and selection for fault classification\",\"authors\":\"R. Fezai, Kais Bouzrara, M. Mansouri, H. Nounou, M. Nounou, M. Trabelsi\",\"doi\":\"10.1109/SSD52085.2021.9429351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Interval Gaussian Process Regression (IGPR)-based Random Forest (RF) proposed for fault detection and diagnosis (FDD) due to its effectiveness in handling uncertain industrial process data, which are often with high nonlinearities and strong correlations. This technique aims to extract the features from raw data using IGPR technique. Then, the interval mean vector and the interval variance matrix obtained from IGPR technique are used as inputs to the Random Forest (RF) classifier. The results show the effectiveness of the features and the classifiers in detection of faults of Wind Energy Conversion (WEC) Systems.\",\"PeriodicalId\":6799,\"journal\":{\"name\":\"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)\",\"volume\":\"68 1\",\"pages\":\"601-606\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSD52085.2021.9429351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD52085.2021.9429351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将基于区间高斯过程回归(IGPR)的随机森林(Random Forest, RF)用于故障检测与诊断(FDD),因为它可以有效地处理不确定的工业过程数据,这些数据通常具有高非线性和强相关性。该技术旨在利用IGPR技术从原始数据中提取特征。然后,将IGPR技术得到的区间均值向量和区间方差矩阵作为随机森林分类器的输入。结果表明,该特征和分类器在风能转换系统故障检测中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Random forest-based nonlinear improved feature extraction and selection for fault classification
In this paper, Interval Gaussian Process Regression (IGPR)-based Random Forest (RF) proposed for fault detection and diagnosis (FDD) due to its effectiveness in handling uncertain industrial process data, which are often with high nonlinearities and strong correlations. This technique aims to extract the features from raw data using IGPR technique. Then, the interval mean vector and the interval variance matrix obtained from IGPR technique are used as inputs to the Random Forest (RF) classifier. The results show the effectiveness of the features and the classifiers in detection of faults of Wind Energy Conversion (WEC) Systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quality of service optimization in OFDM-based cognitive radio network A Fast CFAR Algorithm based on a Novel Region Proposal Approach for Ship Detection in SARlmages Current Challenges of Facial Recognition using Deep Learning Placement of DFIG power plants for Improving Static Voltage Stability Adaptive Finite-Time Robust Sliding Mode Controller For Upper Limb Exoskeleton Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1