测试大体积分类算法

Allen Carrion, Madhuparna Kolay
{"title":"测试大体积分类算法","authors":"Allen Carrion, Madhuparna Kolay","doi":"10.2139/ssrn.3746731","DOIUrl":null,"url":null,"abstract":"We document that the existing evidence that bulk volume trade classification (BVC) measures informed trading arises largely due to mis-specified tests. Simulations show that these tests detect spurious relationships in data containing only uninformed liquidity trades. We also assess the performance of BVC order imbalances in the NASDAQ HFT dataset, showing that BVC order imbalances underperform conventional order imbalance measures in detecting informed trading. The component of order flow designated by BVC as passive informed trading fails to predict returns with the correct sign. On balance, our evidence supports the use of conventional order imbalance measures to identify informed trading.","PeriodicalId":18611,"journal":{"name":"Microeconomics: General Equilibrium & Disequilibrium Models of Financial Markets eJournal","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Testing the Bulk Volume Classification Algorithm\",\"authors\":\"Allen Carrion, Madhuparna Kolay\",\"doi\":\"10.2139/ssrn.3746731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We document that the existing evidence that bulk volume trade classification (BVC) measures informed trading arises largely due to mis-specified tests. Simulations show that these tests detect spurious relationships in data containing only uninformed liquidity trades. We also assess the performance of BVC order imbalances in the NASDAQ HFT dataset, showing that BVC order imbalances underperform conventional order imbalance measures in detecting informed trading. The component of order flow designated by BVC as passive informed trading fails to predict returns with the correct sign. On balance, our evidence supports the use of conventional order imbalance measures to identify informed trading.\",\"PeriodicalId\":18611,\"journal\":{\"name\":\"Microeconomics: General Equilibrium & Disequilibrium Models of Financial Markets eJournal\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microeconomics: General Equilibrium & Disequilibrium Models of Financial Markets eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3746731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microeconomics: General Equilibrium & Disequilibrium Models of Financial Markets eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3746731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们证明,现有证据表明,大宗交易分类(BVC)措施为交易提供信息,主要是由于错误指定的测试而产生的。模拟表明,这些测试可以检测到仅包含不知情流动性交易的数据中的虚假关系。我们还评估了纳斯达克高频交易数据集中BVC订单失衡的表现,表明BVC订单失衡在检测知情交易方面表现不如传统的订单失衡指标。被BVC指定为被动知情交易的订单流组件无法用正确的符号预测收益。总的来说,我们的证据支持使用传统的订单不平衡措施来识别知情交易。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Testing the Bulk Volume Classification Algorithm
We document that the existing evidence that bulk volume trade classification (BVC) measures informed trading arises largely due to mis-specified tests. Simulations show that these tests detect spurious relationships in data containing only uninformed liquidity trades. We also assess the performance of BVC order imbalances in the NASDAQ HFT dataset, showing that BVC order imbalances underperform conventional order imbalance measures in detecting informed trading. The component of order flow designated by BVC as passive informed trading fails to predict returns with the correct sign. On balance, our evidence supports the use of conventional order imbalance measures to identify informed trading.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Framework for Investing with Altruism The Inviolable Law of Demand How Much Does the Market Know? Who Trades at the Close? Implications for Price Discovery and Liquidity Trade and the Rise of Ancient Greek City-States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1