IT支持票务中的情感分析

Cássio Castaldi Araújo Blaz, Karin Becker
{"title":"IT支持票务中的情感分析","authors":"Cássio Castaldi Araújo Blaz, Karin Becker","doi":"10.1145/2901739.2901781","DOIUrl":null,"url":null,"abstract":"Sentiment analysis has been adopted in software engineeringfor problems such as software usability and sentimentof developers in open-source projects. This paper proposesa method to evaluate the sentiment contained in tickets forIT (Information Technology) support.IT tickets are broadin coverage (e.g. infrastructure, software), and involve errors,incidents, requests, etc. The main challenge is to automaticallydistinguish between factual information, whichis intrinsically negative (e.g. error description), from thesentiment embedded in the description. Our approach isto automatically create a Domain Dictionary that containsterms with sentiment in the IT context, used to filter termsin ticket for sentiment analysis. We experiment and evaluatethree approaches for calculating the polarity of terms intickets. Our study was developed using 34,895 tickets fromfive organizations, from which we randomly selected 2,333tickets to compose a Gold Standard. Our best results displayan average precision and recall of 82.83% and 88.42%, whichoutperforms the compared sentiment analysis solutions.","PeriodicalId":6621,"journal":{"name":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","volume":"69 1","pages":"235-246"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Sentiment Analysis in Tickets for IT Support\",\"authors\":\"Cássio Castaldi Araújo Blaz, Karin Becker\",\"doi\":\"10.1145/2901739.2901781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis has been adopted in software engineeringfor problems such as software usability and sentimentof developers in open-source projects. This paper proposesa method to evaluate the sentiment contained in tickets forIT (Information Technology) support.IT tickets are broadin coverage (e.g. infrastructure, software), and involve errors,incidents, requests, etc. The main challenge is to automaticallydistinguish between factual information, whichis intrinsically negative (e.g. error description), from thesentiment embedded in the description. Our approach isto automatically create a Domain Dictionary that containsterms with sentiment in the IT context, used to filter termsin ticket for sentiment analysis. We experiment and evaluatethree approaches for calculating the polarity of terms intickets. Our study was developed using 34,895 tickets fromfive organizations, from which we randomly selected 2,333tickets to compose a Gold Standard. Our best results displayan average precision and recall of 82.83% and 88.42%, whichoutperforms the compared sentiment analysis solutions.\",\"PeriodicalId\":6621,\"journal\":{\"name\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"volume\":\"69 1\",\"pages\":\"235-246\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2901739.2901781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2901739.2901781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

情感分析在软件工程中被用于解决软件可用性和开源项目中开发人员的情感等问题。本文提出了一种评价信息技术支持票证中情感的方法。IT票据的覆盖范围很广(例如,基础设施、软件),并且涉及错误、事件、请求等。主要的挑战是自动区分本质上是负面的事实信息(例如错误描述)和嵌入在描述中的情感。我们的方法是自动创建一个领域字典,其中包含IT上下文中具有情感的术语,用于过滤票据中的术语以进行情感分析。我们实验和评估了三种方法来计算门票项的极性。我们的研究使用了来自五个组织的34,895张票,从中我们随机选择了2,333张票来组成一个金标准。我们的最佳结果显示平均精度和召回率分别为82.83%和88.42%,优于对比的情感分析解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sentiment Analysis in Tickets for IT Support
Sentiment analysis has been adopted in software engineeringfor problems such as software usability and sentimentof developers in open-source projects. This paper proposesa method to evaluate the sentiment contained in tickets forIT (Information Technology) support.IT tickets are broadin coverage (e.g. infrastructure, software), and involve errors,incidents, requests, etc. The main challenge is to automaticallydistinguish between factual information, whichis intrinsically negative (e.g. error description), from thesentiment embedded in the description. Our approach isto automatically create a Domain Dictionary that containsterms with sentiment in the IT context, used to filter termsin ticket for sentiment analysis. We experiment and evaluatethree approaches for calculating the polarity of terms intickets. Our study was developed using 34,895 tickets fromfive organizations, from which we randomly selected 2,333tickets to compose a Gold Standard. Our best results displayan average precision and recall of 82.83% and 88.42%, whichoutperforms the compared sentiment analysis solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MSR '20: 17th International Conference on Mining Software Repositories, Seoul, Republic of Korea, 29-30 June, 2020 Who you gonna call?: analyzing web requests in Android applications Cena słońca w projektowaniu architektonicznym Multi-extract and Multi-level Dataset of Mozilla Issue Tracking History Interactive Exploration of Developer Interaction Traces using a Hidden Markov Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1