基于卷积神经网络和LightGBM的贷款违约预测

IF 0.5 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Data Warehousing and Mining Pub Date : 2023-01-01 DOI:10.4018/ijdwm.315823
Q. Zhu, Wenhao Ding, Mingsen Xiang, M. Hu, Ning Zhang
{"title":"基于卷积神经网络和LightGBM的贷款违约预测","authors":"Q. Zhu, Wenhao Ding, Mingsen Xiang, M. Hu, Ning Zhang","doi":"10.4018/ijdwm.315823","DOIUrl":null,"url":null,"abstract":"With the change of people's consumption mode, credit consumption has gradually become a new consumption trend. Frequent loan defaults give default prediction more and more attention. This paper proposes a new comprehensive prediction method of loan default. This method combines convolutional neural network and LightGBM algorithm to establish a prediction model. Firstly, the excellent feature extraction ability of convolutional neural network is used to extract features from the original loan data and generate a new feature matrix. Secondly, the new feature matrix is used as input data, and the parameters of LightGBM algorithm are adjusted through grid search so as to build the LightGBM model. Finally, the LightGBM model is trained based on the new feature matrix, and the CNN-LightGBM loan default prediction model is obtained. To verify the effectiveness and superiority of our model, a series of experiments were conducted to compare the proposed prediction model with four classical models. The results show that CNN-LightGBM model is superior to other models in all evaluation indexes.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Loan Default Prediction Based on Convolutional Neural Network and LightGBM\",\"authors\":\"Q. Zhu, Wenhao Ding, Mingsen Xiang, M. Hu, Ning Zhang\",\"doi\":\"10.4018/ijdwm.315823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the change of people's consumption mode, credit consumption has gradually become a new consumption trend. Frequent loan defaults give default prediction more and more attention. This paper proposes a new comprehensive prediction method of loan default. This method combines convolutional neural network and LightGBM algorithm to establish a prediction model. Firstly, the excellent feature extraction ability of convolutional neural network is used to extract features from the original loan data and generate a new feature matrix. Secondly, the new feature matrix is used as input data, and the parameters of LightGBM algorithm are adjusted through grid search so as to build the LightGBM model. Finally, the LightGBM model is trained based on the new feature matrix, and the CNN-LightGBM loan default prediction model is obtained. To verify the effectiveness and superiority of our model, a series of experiments were conducted to compare the proposed prediction model with four classical models. The results show that CNN-LightGBM model is superior to other models in all evaluation indexes.\",\"PeriodicalId\":54963,\"journal\":{\"name\":\"International Journal of Data Warehousing and Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Warehousing and Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdwm.315823\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.315823","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2

摘要

随着人们消费方式的转变,信用消费逐渐成为一种新的消费趋势。频繁的贷款违约使违约预测越来越受到人们的关注。本文提出了一种新的贷款违约综合预测方法。该方法结合卷积神经网络和LightGBM算法建立预测模型。首先,利用卷积神经网络出色的特征提取能力,从原始贷款数据中提取特征,生成新的特征矩阵;其次,将新的特征矩阵作为输入数据,通过网格搜索调整LightGBM算法的参数,建立LightGBM模型;最后,基于新的特征矩阵对LightGBM模型进行训练,得到CNN-LightGBM贷款违约预测模型。为了验证该模型的有效性和优越性,进行了一系列的实验,将所提出的预测模型与四种经典模型进行了比较。结果表明,CNN-LightGBM模型在各评价指标上均优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Loan Default Prediction Based on Convolutional Neural Network and LightGBM
With the change of people's consumption mode, credit consumption has gradually become a new consumption trend. Frequent loan defaults give default prediction more and more attention. This paper proposes a new comprehensive prediction method of loan default. This method combines convolutional neural network and LightGBM algorithm to establish a prediction model. Firstly, the excellent feature extraction ability of convolutional neural network is used to extract features from the original loan data and generate a new feature matrix. Secondly, the new feature matrix is used as input data, and the parameters of LightGBM algorithm are adjusted through grid search so as to build the LightGBM model. Finally, the LightGBM model is trained based on the new feature matrix, and the CNN-LightGBM loan default prediction model is obtained. To verify the effectiveness and superiority of our model, a series of experiments were conducted to compare the proposed prediction model with four classical models. The results show that CNN-LightGBM model is superior to other models in all evaluation indexes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Data Warehousing and Mining
International Journal of Data Warehousing and Mining COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving
期刊最新文献
Fishing Vessel Type Recognition Based on Semantic Feature Vector Optimizing Cadet Squad Organizational Satisfaction by Integrating Leadership Factor Data Mining and Integer Programming Hybrid Inductive Graph Method for Matrix Completion A Fuzzy Portfolio Model With Cardinality Constraints Based on Differential Evolution Algorithms Dynamic Research on Youth Thought, Behavior, and Growth Law Based on Deep Learning Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1