进化模型在多处理器任务调度中的应用:串行和多种群遗传算法

Bruno Well Dantas Morais, G. Oliveira, T. I. D. Carvalho
{"title":"进化模型在多处理器任务调度中的应用:串行和多种群遗传算法","authors":"Bruno Well Dantas Morais, G. Oliveira, T. I. D. Carvalho","doi":"10.22456/2175-2745.82412","DOIUrl":null,"url":null,"abstract":"This work presents the development of a multipopulation genetic algorithm for the task schedulingproblem with communication costs, aiming to compare its performance with the serial genetic algorithm. For thispurpose, a set of instances was developed and different approaches for genetic operations were compared.Experiments were conducted varying the number of populations and the number of processors available forscheduling. Solution quality and execution time were analyzed, and results show that the AGMP with adjustedparameters generally produces better solutions while requiring less execution time.","PeriodicalId":82472,"journal":{"name":"Research initiative, treatment action : RITA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary Models applied to Multiprocessor TaskScheduling: Serial and Multipopulation Genetic Algorithm\",\"authors\":\"Bruno Well Dantas Morais, G. Oliveira, T. I. D. Carvalho\",\"doi\":\"10.22456/2175-2745.82412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the development of a multipopulation genetic algorithm for the task schedulingproblem with communication costs, aiming to compare its performance with the serial genetic algorithm. For thispurpose, a set of instances was developed and different approaches for genetic operations were compared.Experiments were conducted varying the number of populations and the number of processors available forscheduling. Solution quality and execution time were analyzed, and results show that the AGMP with adjustedparameters generally produces better solutions while requiring less execution time.\",\"PeriodicalId\":82472,\"journal\":{\"name\":\"Research initiative, treatment action : RITA\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research initiative, treatment action : RITA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22456/2175-2745.82412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research initiative, treatment action : RITA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22456/2175-2745.82412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种多种群遗传算法,用于解决具有通信成本的任务调度问题,并将其性能与串行遗传算法进行了比较。为此,开发了一组实例,并对不同的遗传操作方法进行了比较。实验通过改变种群数量和可用于调度的处理器数量进行。对求解质量和执行时间进行了分析,结果表明,调整参数后的AGMP通常可以得到更好的解,并且需要更少的执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolutionary Models applied to Multiprocessor TaskScheduling: Serial and Multipopulation Genetic Algorithm
This work presents the development of a multipopulation genetic algorithm for the task schedulingproblem with communication costs, aiming to compare its performance with the serial genetic algorithm. For thispurpose, a set of instances was developed and different approaches for genetic operations were compared.Experiments were conducted varying the number of populations and the number of processors available forscheduling. Solution quality and execution time were analyzed, and results show that the AGMP with adjustedparameters generally produces better solutions while requiring less execution time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Causal Effect Estimation of Emotional Labeling of Watched Videos Exploring Supervised Techniques for Automated Recognition of Intention Classes from Portuguese Free Texts on Agriculture Stochastic Models for Planning VLE Moodle Environments based on Containers and Virtual Machines A Review of Testbeds on SCADA Systems with Malware Analysis A Conceptual Model for Situating Purposes in Artificial Institutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1