M. Hasan, C. Madasu, K. Rathod, C. Kwong, D. Wilkowski
{"title":"非阿贝尔规范场中超冷气体的演化:有限温度效应","authors":"M. Hasan, C. Madasu, K. Rathod, C. Kwong, D. Wilkowski","doi":"10.1070/qel18071","DOIUrl":null,"url":null,"abstract":"The cooling mechanisms of a Fermionic strontium-87 gas are refined in order to study its evolution under a non-Abelian gauge field. Significant attention is paid to the effect of the finite temperature of the gas on the process in question. The efficiency of the loading of atoms in a cross-dipole trap is described in detail, the quantitative performance of the evaporative cooling is calculated, and a degenerate Fermi gas is characterised using a Thomas – Fermi distribution.","PeriodicalId":20775,"journal":{"name":"Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evolution of an ultracold gas in a non-Abelian gauge field: finite temperature effect\",\"authors\":\"M. Hasan, C. Madasu, K. Rathod, C. Kwong, D. Wilkowski\",\"doi\":\"10.1070/qel18071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cooling mechanisms of a Fermionic strontium-87 gas are refined in order to study its evolution under a non-Abelian gauge field. Significant attention is paid to the effect of the finite temperature of the gas on the process in question. The efficiency of the loading of atoms in a cross-dipole trap is described in detail, the quantitative performance of the evaporative cooling is calculated, and a degenerate Fermi gas is characterised using a Thomas – Fermi distribution.\",\"PeriodicalId\":20775,\"journal\":{\"name\":\"Quantum Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1070/qel18071\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1070/qel18071","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Evolution of an ultracold gas in a non-Abelian gauge field: finite temperature effect
The cooling mechanisms of a Fermionic strontium-87 gas are refined in order to study its evolution under a non-Abelian gauge field. Significant attention is paid to the effect of the finite temperature of the gas on the process in question. The efficiency of the loading of atoms in a cross-dipole trap is described in detail, the quantitative performance of the evaporative cooling is calculated, and a degenerate Fermi gas is characterised using a Thomas – Fermi distribution.
期刊介绍:
Quantum Electronics covers the following principal headings
Letters
Lasers
Active Media
Interaction of Laser Radiation with Matter
Laser Plasma
Nonlinear Optical Phenomena
Nanotechnologies
Quantum Electronic Devices
Optical Processing of Information
Fiber and Integrated Optics
Laser Applications in Technology and Metrology, Biology and Medicine.