用于高维时间序列数据分析的深度直接判别解码器

Mohammadreza Rezaei, Milos Popovic, M. Lankarany, A. Yousefi
{"title":"用于高维时间序列数据分析的深度直接判别解码器","authors":"Mohammadreza Rezaei, Milos Popovic, M. Lankarany, A. Yousefi","doi":"10.51628/001c.85131","DOIUrl":null,"url":null,"abstract":"The state-space models (SSMs) are widely utilized in the analysis of time-series data. SSMs rely on an explicit definition of the state and observation processes. Characterizing these processes is not always easy and becomes a modeling challenge when the dimension of observed data grows or the observed data distribution deviates from the normal distribution. Here, we propose a new formulation of SSM for high-dimensional observation processes with a heavy-tailed distribution. We call this solution the deep direct discriminative process (D4). The D4 brings deep neural networks’ expressiveness and scalability to the SSM formulation letting us build a novel solution that efficiently estimates the underlying state processes through high-dimensional observation signal.We demonstrate the D4 solutions in simulated and real data such as Lorenz attractors, Langevin dynamics, random walk dynamics, and rat hippocampus spiking neural data and show that the D4’s performance precedes traditional SSMs and RNNs. The D4 can be applied to a broader class of time-series data where the connection between high-dimensional observation and the underlying latent process is hard to characterize.","PeriodicalId":74289,"journal":{"name":"Neurons, behavior, data analysis and theory","volume":"3 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Direct Discriminative Decoders for High-dimensional Time-series Data Analysis\",\"authors\":\"Mohammadreza Rezaei, Milos Popovic, M. Lankarany, A. Yousefi\",\"doi\":\"10.51628/001c.85131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The state-space models (SSMs) are widely utilized in the analysis of time-series data. SSMs rely on an explicit definition of the state and observation processes. Characterizing these processes is not always easy and becomes a modeling challenge when the dimension of observed data grows or the observed data distribution deviates from the normal distribution. Here, we propose a new formulation of SSM for high-dimensional observation processes with a heavy-tailed distribution. We call this solution the deep direct discriminative process (D4). The D4 brings deep neural networks’ expressiveness and scalability to the SSM formulation letting us build a novel solution that efficiently estimates the underlying state processes through high-dimensional observation signal.We demonstrate the D4 solutions in simulated and real data such as Lorenz attractors, Langevin dynamics, random walk dynamics, and rat hippocampus spiking neural data and show that the D4’s performance precedes traditional SSMs and RNNs. The D4 can be applied to a broader class of time-series data where the connection between high-dimensional observation and the underlying latent process is hard to characterize.\",\"PeriodicalId\":74289,\"journal\":{\"name\":\"Neurons, behavior, data analysis and theory\",\"volume\":\"3 2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurons, behavior, data analysis and theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51628/001c.85131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurons, behavior, data analysis and theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51628/001c.85131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

状态空间模型在时间序列数据分析中得到了广泛的应用。ssm依赖于状态和观测过程的明确定义。描述这些过程并不总是容易的,当观测数据的维数增加或观测数据分布偏离正态分布时,就成为建模的挑战。在这里,我们提出了一种新的具有重尾分布的高维观测过程的SSM公式。我们称这种解决方案为深度直接判别过程(D4)。D4将深度神经网络的表达能力和可扩展性引入到SSM公式中,使我们能够构建一种新的解决方案,通过高维观测信号有效地估计潜在的状态过程。我们在模拟和真实数据(如Lorenz吸引子、Langevin动力学、随机漫步动力学和大鼠海马峰神经数据)中展示了D4解决方案,并表明D4的性能优于传统的ssm和rnn。D4可以应用于更广泛的时间序列数据,其中高维观测和潜在过程之间的联系很难表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Direct Discriminative Decoders for High-dimensional Time-series Data Analysis
The state-space models (SSMs) are widely utilized in the analysis of time-series data. SSMs rely on an explicit definition of the state and observation processes. Characterizing these processes is not always easy and becomes a modeling challenge when the dimension of observed data grows or the observed data distribution deviates from the normal distribution. Here, we propose a new formulation of SSM for high-dimensional observation processes with a heavy-tailed distribution. We call this solution the deep direct discriminative process (D4). The D4 brings deep neural networks’ expressiveness and scalability to the SSM formulation letting us build a novel solution that efficiently estimates the underlying state processes through high-dimensional observation signal.We demonstrate the D4 solutions in simulated and real data such as Lorenz attractors, Langevin dynamics, random walk dynamics, and rat hippocampus spiking neural data and show that the D4’s performance precedes traditional SSMs and RNNs. The D4 can be applied to a broader class of time-series data where the connection between high-dimensional observation and the underlying latent process is hard to characterize.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling Spontaneous Firing Activity of the Motor Cortex in a Spiking Neural Network with Random and Local Connectivity Expressive architectures enhance interpretability of dynamics-based neural population models Probabilistic representations as building blocks for higher-level vision Deep Direct Discriminative Decoders for High-dimensional Time-series Data Analysis Frontal effective connectivity increases with task demands and time on task: a Dynamic Causal Model of electrocorticogram in macaque monkeys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1