T. Richard, Yan Chastagnier, V. Szabo, K. Chalard, B. Summa, Jean-Marc Thiery, T. Boubekeur, Noura Faraj
{"title":"使用交互式体素网格变形和渲染的多模态3D图像配准","authors":"T. Richard, Yan Chastagnier, V. Szabo, K. Chalard, B. Summa, Jean-Marc Thiery, T. Boubekeur, Noura Faraj","doi":"10.2312/vcbm.20221191","DOIUrl":null,"url":null,"abstract":"We introduce a novel multi-modal 3D image registration framework based on 3D user-guided deformation of both volume’s shape and intensity values. Being able to apply deformations in 3D gives access to a wide new range of interactions allowing for the registration of images from any acquisition method and of any organ, complete or partial. Our framework uses a state of the art 3D volume rendering method for real-time feedback on the registration accuracy as well as the image deformation. We propose a novel methodological variation to accurately display 3D segmented voxel grids, which is a requirement in a registration context for visualizing a segmented atlas. Our pipeline is implemented in an open-source software (available via GitHub) and was directly used by biologists for registration of mouse brain model autofluorescence acquisition on the Allen Brain Atlas. The latter mapping allows them to retrieve regions of interest properly identified on the segmented atlas in acquired brain datasets and therefore extract only high-resolution images of those areas, avoiding the creation of images too large","PeriodicalId":88872,"journal":{"name":"Eurographics Workshop on Visual Computing for Biomedicine","volume":"30 1","pages":"93-97"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-modal 3D Image Registration Using Interactive Voxel Grid Deformation and Rendering\",\"authors\":\"T. Richard, Yan Chastagnier, V. Szabo, K. Chalard, B. Summa, Jean-Marc Thiery, T. Boubekeur, Noura Faraj\",\"doi\":\"10.2312/vcbm.20221191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel multi-modal 3D image registration framework based on 3D user-guided deformation of both volume’s shape and intensity values. Being able to apply deformations in 3D gives access to a wide new range of interactions allowing for the registration of images from any acquisition method and of any organ, complete or partial. Our framework uses a state of the art 3D volume rendering method for real-time feedback on the registration accuracy as well as the image deformation. We propose a novel methodological variation to accurately display 3D segmented voxel grids, which is a requirement in a registration context for visualizing a segmented atlas. Our pipeline is implemented in an open-source software (available via GitHub) and was directly used by biologists for registration of mouse brain model autofluorescence acquisition on the Allen Brain Atlas. The latter mapping allows them to retrieve regions of interest properly identified on the segmented atlas in acquired brain datasets and therefore extract only high-resolution images of those areas, avoiding the creation of images too large\",\"PeriodicalId\":88872,\"journal\":{\"name\":\"Eurographics Workshop on Visual Computing for Biomedicine\",\"volume\":\"30 1\",\"pages\":\"93-97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Workshop on Visual Computing for Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/vcbm.20221191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Visual Computing for Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vcbm.20221191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-modal 3D Image Registration Using Interactive Voxel Grid Deformation and Rendering
We introduce a novel multi-modal 3D image registration framework based on 3D user-guided deformation of both volume’s shape and intensity values. Being able to apply deformations in 3D gives access to a wide new range of interactions allowing for the registration of images from any acquisition method and of any organ, complete or partial. Our framework uses a state of the art 3D volume rendering method for real-time feedback on the registration accuracy as well as the image deformation. We propose a novel methodological variation to accurately display 3D segmented voxel grids, which is a requirement in a registration context for visualizing a segmented atlas. Our pipeline is implemented in an open-source software (available via GitHub) and was directly used by biologists for registration of mouse brain model autofluorescence acquisition on the Allen Brain Atlas. The latter mapping allows them to retrieve regions of interest properly identified on the segmented atlas in acquired brain datasets and therefore extract only high-resolution images of those areas, avoiding the creation of images too large