施氮、锌和腐植酸对小麦生长、形态性状、产量及产量构成的影响

A. Iqbal, H. Raza, M. Zaman, Rayyan Khan, Muhammad Adnan, Abdullah Khan, Syeda Wajeeha Gillani, Shad Khan Khalil
{"title":"施氮、锌和腐植酸对小麦生长、形态性状、产量及产量构成的影响","authors":"A. Iqbal, H. Raza, M. Zaman, Rayyan Khan, Muhammad Adnan, Abdullah Khan, Syeda Wajeeha Gillani, Shad Khan Khalil","doi":"10.56946/jspae.v1i1.11","DOIUrl":null,"url":null,"abstract":"To investigate the response of wheat to different levels of nitrogen (N), zinc (Zn) and humic acid (HA), an experiment was conducted at Agronomy Research Farm, the University of Agriculture, Peshawar, during 2014-15. The experiment was laid out in a randomized complete block design having three replications. Three levels of N (80, 120 and 160 kg ha-1), Zn (6, 12 and18 kg ha-1) and HA (5, 10 and 15 kg ha-1) were used. Results showed that N application at the rate of 160 kg ha-1 manifested maximum days to physiological maturity (164 days), productive tillers m-2 (248), spikes m-2 (258), leaf area tiller-1 (113.6 cm2), spike length (10.4 cm), grains spike-1 (52), 1000-grain weight (47.5 g), biological yield (9260 kg ha-1), grain yield (3723 kg ha-1) and harvest index (40%). Zn treated plots at the rate of 12 kg ha-1 showed maximum days to physiological maturity (162 days), productive tillers m-2 (241), spikes m-2 (252), grains spike-1 (51), 1000-grain weight (45.2 g), biological yield (8843 kg ha-1), grain yield (3375 kg ha-1) and harvest index (39 %). Similarly, HA treated plots at the rate of 12 kg ha-1 revealed maximum days to physiological maturity (162 days), productive tillers m-2 (238), spikes m-2(249), spike length (9.7 cm), 1000-grain weight (45.00 g), biological yield (8649 kg ha-1), grain yield (3342 kg ha-1) and harvest index (39%). The combined application of N, Zn, and HA had significantly affected wheat yield and yield components. It was concluded that N at the rate of 160 kg ha-1, Zn 12 kg ha-1 and HA 10 kg ha-1 significantly increased yield and yield components of wheat.","PeriodicalId":29812,"journal":{"name":"Journal of Soil, Plant and Environment","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Impact of Nitrogen, Zinc and Humic Acid Application on Wheat Growth, Morphological Traits, Yield and Yield Components\",\"authors\":\"A. Iqbal, H. Raza, M. Zaman, Rayyan Khan, Muhammad Adnan, Abdullah Khan, Syeda Wajeeha Gillani, Shad Khan Khalil\",\"doi\":\"10.56946/jspae.v1i1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate the response of wheat to different levels of nitrogen (N), zinc (Zn) and humic acid (HA), an experiment was conducted at Agronomy Research Farm, the University of Agriculture, Peshawar, during 2014-15. The experiment was laid out in a randomized complete block design having three replications. Three levels of N (80, 120 and 160 kg ha-1), Zn (6, 12 and18 kg ha-1) and HA (5, 10 and 15 kg ha-1) were used. Results showed that N application at the rate of 160 kg ha-1 manifested maximum days to physiological maturity (164 days), productive tillers m-2 (248), spikes m-2 (258), leaf area tiller-1 (113.6 cm2), spike length (10.4 cm), grains spike-1 (52), 1000-grain weight (47.5 g), biological yield (9260 kg ha-1), grain yield (3723 kg ha-1) and harvest index (40%). Zn treated plots at the rate of 12 kg ha-1 showed maximum days to physiological maturity (162 days), productive tillers m-2 (241), spikes m-2 (252), grains spike-1 (51), 1000-grain weight (45.2 g), biological yield (8843 kg ha-1), grain yield (3375 kg ha-1) and harvest index (39 %). Similarly, HA treated plots at the rate of 12 kg ha-1 revealed maximum days to physiological maturity (162 days), productive tillers m-2 (238), spikes m-2(249), spike length (9.7 cm), 1000-grain weight (45.00 g), biological yield (8649 kg ha-1), grain yield (3342 kg ha-1) and harvest index (39%). The combined application of N, Zn, and HA had significantly affected wheat yield and yield components. It was concluded that N at the rate of 160 kg ha-1, Zn 12 kg ha-1 and HA 10 kg ha-1 significantly increased yield and yield components of wheat.\",\"PeriodicalId\":29812,\"journal\":{\"name\":\"Journal of Soil, Plant and Environment\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soil, Plant and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56946/jspae.v1i1.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil, Plant and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56946/jspae.v1i1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了研究小麦对不同氮、锌和腐植酸水平的响应,2014- 2015年在白沙瓦农业大学农学研究农场进行了试验。实验采用随机完全区组设计,有3个重复。施用氮(80、120和160 kg HA -1)、锌(6、12和18 kg HA -1)和HA(5、10和15 kg HA -1) 3个水平。结果表明,施氮量为160 kg hm -1时,植株生理成熟期最长(164 d),分蘖数(248),穗数(258),叶面积(113.6 cm2),穗长(10.4 cm),穗数(52),千粒重(47.5 g),生物产量(9260 kg hm -1),籽粒产量(3723 kg hm -1),收获指数(40%)。12 kg hm -1 Zn处理地块生理成熟期最长(162天),分蘖数最多(241),穗数最多(252),穗数最多(51),千粒重最多(45.2 g),生物产量最多(8843 kg hm -1),籽粒产量最多(3375 kg hm -1),收获指数最高(39%)。同样,施用12 kg HA -1的地块生理成熟最长天数(162天),分蘖数(238),穗数(249),穗长(9.7 cm),千粒重(45.00 g),生物产量(8649 kg HA -1),籽粒产量(3342 kg HA -1)和收获指数(39%)。氮、锌和腐殖酸配施对小麦产量和产量组成有显著影响。综上所述,施氮量为160 kg HA -1、施锌量为12 kg HA -1、施磷肥量为10 kg HA -1均能显著提高小麦产量和产量组成成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Nitrogen, Zinc and Humic Acid Application on Wheat Growth, Morphological Traits, Yield and Yield Components
To investigate the response of wheat to different levels of nitrogen (N), zinc (Zn) and humic acid (HA), an experiment was conducted at Agronomy Research Farm, the University of Agriculture, Peshawar, during 2014-15. The experiment was laid out in a randomized complete block design having three replications. Three levels of N (80, 120 and 160 kg ha-1), Zn (6, 12 and18 kg ha-1) and HA (5, 10 and 15 kg ha-1) were used. Results showed that N application at the rate of 160 kg ha-1 manifested maximum days to physiological maturity (164 days), productive tillers m-2 (248), spikes m-2 (258), leaf area tiller-1 (113.6 cm2), spike length (10.4 cm), grains spike-1 (52), 1000-grain weight (47.5 g), biological yield (9260 kg ha-1), grain yield (3723 kg ha-1) and harvest index (40%). Zn treated plots at the rate of 12 kg ha-1 showed maximum days to physiological maturity (162 days), productive tillers m-2 (241), spikes m-2 (252), grains spike-1 (51), 1000-grain weight (45.2 g), biological yield (8843 kg ha-1), grain yield (3375 kg ha-1) and harvest index (39 %). Similarly, HA treated plots at the rate of 12 kg ha-1 revealed maximum days to physiological maturity (162 days), productive tillers m-2 (238), spikes m-2(249), spike length (9.7 cm), 1000-grain weight (45.00 g), biological yield (8649 kg ha-1), grain yield (3342 kg ha-1) and harvest index (39%). The combined application of N, Zn, and HA had significantly affected wheat yield and yield components. It was concluded that N at the rate of 160 kg ha-1, Zn 12 kg ha-1 and HA 10 kg ha-1 significantly increased yield and yield components of wheat.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Soil, Plant and Environment
Journal of Soil, Plant and Environment Agricultural Sciences-Environmental Sciences
自引率
0.00%
发文量
0
期刊介绍: Journal of Soil, Plant and Environment is an open peer-reviewed journal that considers articles and review articles on all aspects of agricultural sciences. Aim and Scope Journal of Soil, Plant and Environment (ISSN: 2957-9082) is an international journal dedicated to the advancements in agriculture throughout the world. The goal of this journal is to provide a platform for scientists, students, academics and engineers all over the world to promote, share, and discuss various new issues and developments in different areas of agricultural sciences. All manuscripts must be prepared in English and are subject to a rigorous and fair peer-review process. Accepted papers will appear online within 3 weeks followed by printed hard copy. Journal of Soil, Plant and Environment (ISSN: 2957-9082) publishes original papers including but not limited to the following fields: Soil–plant relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as applied to production agriculture. We are also interested in: 1) Short Reports– 2-5 pages where the paper is intended to present either an original idea with theoretical treatment or preliminary data and results; 2) Book Reviews – Comments and critiques of recently published books in agricultural sciences.
期刊最新文献
The Problem of Charcoal Rot in Soybean, its Implications, and Approaches for Developing Resistant Varieties Synergistic Effects of Rice Straw Return and Nitrogen Fertilizer on Rhizosphere Bacterial Communities and Soil Fertility Enhancing Apple Orchard Productivity through Biochar and Fertilizer Amendments: A Soil Aggregation Study Impact of Long-Term Organic Manure Application on Yield, Zinc, and Copper Uptake in Maize, Peas, and Mungbean (Vigna radiata L.) Cropping System Identification of Heat Stress Tolerant Wheat Genotype Using Stress Tolerance Indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1