基于遗传算法的2型模糊糖尿病分类系统优化设计

P. Melin, D. Sánchez
{"title":"基于遗传算法的2型模糊糖尿病分类系统优化设计","authors":"P. Melin, D. Sánchez","doi":"10.3233/HIS-210004","DOIUrl":null,"url":null,"abstract":"Diabetes has become a global health problem, where a proper diagnosis is vital for the life quality of patients. In this article, a genetic algorithm is put forward for designing type-2 fuzzy inference systems to perform Diabetes Classification. We aim at finding parameter values of Type-2 Trapezoidal membership functions and the type of model (Mamdani or Sugeno) with this optimization. To verify the effectiveness of the proposed approach, the PIMA Indian Diabetes dataset is used, and results are compared with type-1 fuzzy systems. Five attributes are used considered as the inputs of the fuzzy inference systems to obtain a Diabetes diagnosis. The instances are divided into design and testing sets, where the design set allows the genetic algorithm to minimize the error of classification, and finally, the real behavior of the fuzzy inference system is validated with the testing set.","PeriodicalId":88526,"journal":{"name":"International journal of hybrid intelligent systems","volume":"33 1","pages":"15-32"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal design of type-2 fuzzy systems for diabetes classification based on genetic algorithms\",\"authors\":\"P. Melin, D. Sánchez\",\"doi\":\"10.3233/HIS-210004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes has become a global health problem, where a proper diagnosis is vital for the life quality of patients. In this article, a genetic algorithm is put forward for designing type-2 fuzzy inference systems to perform Diabetes Classification. We aim at finding parameter values of Type-2 Trapezoidal membership functions and the type of model (Mamdani or Sugeno) with this optimization. To verify the effectiveness of the proposed approach, the PIMA Indian Diabetes dataset is used, and results are compared with type-1 fuzzy systems. Five attributes are used considered as the inputs of the fuzzy inference systems to obtain a Diabetes diagnosis. The instances are divided into design and testing sets, where the design set allows the genetic algorithm to minimize the error of classification, and finally, the real behavior of the fuzzy inference system is validated with the testing set.\",\"PeriodicalId\":88526,\"journal\":{\"name\":\"International journal of hybrid intelligent systems\",\"volume\":\"33 1\",\"pages\":\"15-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of hybrid intelligent systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/HIS-210004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of hybrid intelligent systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/HIS-210004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

糖尿病已成为一个全球性的健康问题,正确的诊断对患者的生活质量至关重要。本文提出了一种遗传算法,用于设计2型模糊推理系统进行糖尿病分类。我们的目标是找到2型梯形隶属函数的参数值和模型类型(Mamdani或Sugeno)。为了验证所提出方法的有效性,使用了PIMA印度糖尿病数据集,并将结果与1型模糊系统进行了比较。采用五个属性作为模糊推理系统的输入,得到糖尿病的诊断结果。实例被分为设计集和测试集,其中设计集允许遗传算法最小化分类误差,最后用测试集验证模糊推理系统的真实行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal design of type-2 fuzzy systems for diabetes classification based on genetic algorithms
Diabetes has become a global health problem, where a proper diagnosis is vital for the life quality of patients. In this article, a genetic algorithm is put forward for designing type-2 fuzzy inference systems to perform Diabetes Classification. We aim at finding parameter values of Type-2 Trapezoidal membership functions and the type of model (Mamdani or Sugeno) with this optimization. To verify the effectiveness of the proposed approach, the PIMA Indian Diabetes dataset is used, and results are compared with type-1 fuzzy systems. Five attributes are used considered as the inputs of the fuzzy inference systems to obtain a Diabetes diagnosis. The instances are divided into design and testing sets, where the design set allows the genetic algorithm to minimize the error of classification, and finally, the real behavior of the fuzzy inference system is validated with the testing set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
期刊最新文献
Vision transformer-convolution for breast cancer classification using mammography images: A comparative study Comparative temporal dynamics of individuation and perceptual averaging using a biological neural network model Metaheuristic optimized electrocardiography time-series anomaly classification with recurrent and long-short term neural networks Classifications, evaluation metrics, datasets, and domains in recommendation services: A survey A hybrid approach of machine learning algorithms for improving accuracy of social media crisis detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1