{"title":"基于遗传算法的2型模糊糖尿病分类系统优化设计","authors":"P. Melin, D. Sánchez","doi":"10.3233/HIS-210004","DOIUrl":null,"url":null,"abstract":"Diabetes has become a global health problem, where a proper diagnosis is vital for the life quality of patients. In this article, a genetic algorithm is put forward for designing type-2 fuzzy inference systems to perform Diabetes Classification. We aim at finding parameter values of Type-2 Trapezoidal membership functions and the type of model (Mamdani or Sugeno) with this optimization. To verify the effectiveness of the proposed approach, the PIMA Indian Diabetes dataset is used, and results are compared with type-1 fuzzy systems. Five attributes are used considered as the inputs of the fuzzy inference systems to obtain a Diabetes diagnosis. The instances are divided into design and testing sets, where the design set allows the genetic algorithm to minimize the error of classification, and finally, the real behavior of the fuzzy inference system is validated with the testing set.","PeriodicalId":88526,"journal":{"name":"International journal of hybrid intelligent systems","volume":"33 1","pages":"15-32"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimal design of type-2 fuzzy systems for diabetes classification based on genetic algorithms\",\"authors\":\"P. Melin, D. Sánchez\",\"doi\":\"10.3233/HIS-210004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes has become a global health problem, where a proper diagnosis is vital for the life quality of patients. In this article, a genetic algorithm is put forward for designing type-2 fuzzy inference systems to perform Diabetes Classification. We aim at finding parameter values of Type-2 Trapezoidal membership functions and the type of model (Mamdani or Sugeno) with this optimization. To verify the effectiveness of the proposed approach, the PIMA Indian Diabetes dataset is used, and results are compared with type-1 fuzzy systems. Five attributes are used considered as the inputs of the fuzzy inference systems to obtain a Diabetes diagnosis. The instances are divided into design and testing sets, where the design set allows the genetic algorithm to minimize the error of classification, and finally, the real behavior of the fuzzy inference system is validated with the testing set.\",\"PeriodicalId\":88526,\"journal\":{\"name\":\"International journal of hybrid intelligent systems\",\"volume\":\"33 1\",\"pages\":\"15-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of hybrid intelligent systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/HIS-210004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of hybrid intelligent systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/HIS-210004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal design of type-2 fuzzy systems for diabetes classification based on genetic algorithms
Diabetes has become a global health problem, where a proper diagnosis is vital for the life quality of patients. In this article, a genetic algorithm is put forward for designing type-2 fuzzy inference systems to perform Diabetes Classification. We aim at finding parameter values of Type-2 Trapezoidal membership functions and the type of model (Mamdani or Sugeno) with this optimization. To verify the effectiveness of the proposed approach, the PIMA Indian Diabetes dataset is used, and results are compared with type-1 fuzzy systems. Five attributes are used considered as the inputs of the fuzzy inference systems to obtain a Diabetes diagnosis. The instances are divided into design and testing sets, where the design set allows the genetic algorithm to minimize the error of classification, and finally, the real behavior of the fuzzy inference system is validated with the testing set.