N. Horvatinčič, Andreja Sironić, J. Barešić, I. K. Bronić, J. Nikolov, N. Todorović, J. Hansman, M. Krmar
{"title":"克罗地亚普利特维采湖湖泊沉积物的同位素分析","authors":"N. Horvatinčič, Andreja Sironić, J. Barešić, I. K. Bronić, J. Nikolov, N. Todorović, J. Hansman, M. Krmar","doi":"10.2478/s11534-014-0490-7","DOIUrl":null,"url":null,"abstract":"The analyses of radioactive isotopes 14C, 137Cs and 210Pb, and stable isotope 13C were performed in the sediment cores, top 40 cm, taken in 2011 from karst lakes Prošće and Kozjak in the Plitvice Lakes National Park, central Croatia. Frozen sediment cores were cut into 1 cm thick layers and dried. 14C activity in both carbonate and organic fractions was measured using accelerator mass spectrometry technique with graphite synthesis. 137Cs, 210Pb, 214Pb and 214Bi were measured by low level gamma spectrometry method on ORTECHPGe detector with the efficiency of 32%.Distribution of 14C activity from both lakes showed increase of the 14C activity in the top 10–12 cm in both carbonate and organic fractions as a response to thermonuclear bomb-produced 14C in the atmosphere in the sixties of the 20th century. Anthropogenically produced 137Cs was also observed in sediment profiles. Sedimentation rates for both lake sediments were estimated based on the unsupported 210Pb activity.Different 14C activity of the carbonate fraction (63–80 pMC, percent of modern carbon) and organic fraction (82–93 pMC) is the result of geochemical and biological processes of the sediment precipitation in the lake waters. This is also confirmed by the δ13C values of both fractions. Carbon isotope composition, a14C and δ13C, was compared with the lake sediments from the same lakes collected in 1989 and 2003.","PeriodicalId":50985,"journal":{"name":"Central European Journal of Physics","volume":"1 1","pages":"707-713"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Isotope analyses of the lake sediments in the Plitvice Lakes, Croatia\",\"authors\":\"N. Horvatinčič, Andreja Sironić, J. Barešić, I. K. Bronić, J. Nikolov, N. Todorović, J. Hansman, M. Krmar\",\"doi\":\"10.2478/s11534-014-0490-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analyses of radioactive isotopes 14C, 137Cs and 210Pb, and stable isotope 13C were performed in the sediment cores, top 40 cm, taken in 2011 from karst lakes Prošće and Kozjak in the Plitvice Lakes National Park, central Croatia. Frozen sediment cores were cut into 1 cm thick layers and dried. 14C activity in both carbonate and organic fractions was measured using accelerator mass spectrometry technique with graphite synthesis. 137Cs, 210Pb, 214Pb and 214Bi were measured by low level gamma spectrometry method on ORTECHPGe detector with the efficiency of 32%.Distribution of 14C activity from both lakes showed increase of the 14C activity in the top 10–12 cm in both carbonate and organic fractions as a response to thermonuclear bomb-produced 14C in the atmosphere in the sixties of the 20th century. Anthropogenically produced 137Cs was also observed in sediment profiles. Sedimentation rates for both lake sediments were estimated based on the unsupported 210Pb activity.Different 14C activity of the carbonate fraction (63–80 pMC, percent of modern carbon) and organic fraction (82–93 pMC) is the result of geochemical and biological processes of the sediment precipitation in the lake waters. This is also confirmed by the δ13C values of both fractions. Carbon isotope composition, a14C and δ13C, was compared with the lake sediments from the same lakes collected in 1989 and 2003.\",\"PeriodicalId\":50985,\"journal\":{\"name\":\"Central European Journal of Physics\",\"volume\":\"1 1\",\"pages\":\"707-713\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11534-014-0490-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11534-014-0490-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Isotope analyses of the lake sediments in the Plitvice Lakes, Croatia
The analyses of radioactive isotopes 14C, 137Cs and 210Pb, and stable isotope 13C were performed in the sediment cores, top 40 cm, taken in 2011 from karst lakes Prošće and Kozjak in the Plitvice Lakes National Park, central Croatia. Frozen sediment cores were cut into 1 cm thick layers and dried. 14C activity in both carbonate and organic fractions was measured using accelerator mass spectrometry technique with graphite synthesis. 137Cs, 210Pb, 214Pb and 214Bi were measured by low level gamma spectrometry method on ORTECHPGe detector with the efficiency of 32%.Distribution of 14C activity from both lakes showed increase of the 14C activity in the top 10–12 cm in both carbonate and organic fractions as a response to thermonuclear bomb-produced 14C in the atmosphere in the sixties of the 20th century. Anthropogenically produced 137Cs was also observed in sediment profiles. Sedimentation rates for both lake sediments were estimated based on the unsupported 210Pb activity.Different 14C activity of the carbonate fraction (63–80 pMC, percent of modern carbon) and organic fraction (82–93 pMC) is the result of geochemical and biological processes of the sediment precipitation in the lake waters. This is also confirmed by the δ13C values of both fractions. Carbon isotope composition, a14C and δ13C, was compared with the lake sediments from the same lakes collected in 1989 and 2003.