{"title":"无平方参数纯场的积分基","authors":"László Remete","doi":"10.1556/012.2020.57.1.1450","DOIUrl":null,"url":null,"abstract":"\n Let m ≠ 0, ±1 and n ≥ 2 be integers. The ring of algebraic integers of the pure fields of type is explicitly known for n = 2, 3,4. It is well known that for n = 2, an integral basis of the pure quadratic fields can be given parametrically, by using the remainder of the square-free part of m modulo 4. Such characterisation of an integral basis also exists for cubic and quartic pure fields, but for higher degree pure fields there are only results for special cases.\n In this paper we explicitly give an integral basis of the field , where m ≠ ±1 is square-free. Furthermore, we show that similarly to the quadratic case, an integral basis of is repeating periodically in m with period length depending on n.","PeriodicalId":51187,"journal":{"name":"Studia Scientiarum Mathematicarum Hungarica","volume":"28 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integral bases of pure fields with square-free parameter\",\"authors\":\"László Remete\",\"doi\":\"10.1556/012.2020.57.1.1450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Let m ≠ 0, ±1 and n ≥ 2 be integers. The ring of algebraic integers of the pure fields of type is explicitly known for n = 2, 3,4. It is well known that for n = 2, an integral basis of the pure quadratic fields can be given parametrically, by using the remainder of the square-free part of m modulo 4. Such characterisation of an integral basis also exists for cubic and quartic pure fields, but for higher degree pure fields there are only results for special cases.\\n In this paper we explicitly give an integral basis of the field , where m ≠ ±1 is square-free. Furthermore, we show that similarly to the quadratic case, an integral basis of is repeating periodically in m with period length depending on n.\",\"PeriodicalId\":51187,\"journal\":{\"name\":\"Studia Scientiarum Mathematicarum Hungarica\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Scientiarum Mathematicarum Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2020.57.1.1450\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Scientiarum Mathematicarum Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2020.57.1.1450","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Integral bases of pure fields with square-free parameter
Let m ≠ 0, ±1 and n ≥ 2 be integers. The ring of algebraic integers of the pure fields of type is explicitly known for n = 2, 3,4. It is well known that for n = 2, an integral basis of the pure quadratic fields can be given parametrically, by using the remainder of the square-free part of m modulo 4. Such characterisation of an integral basis also exists for cubic and quartic pure fields, but for higher degree pure fields there are only results for special cases.
In this paper we explicitly give an integral basis of the field , where m ≠ ±1 is square-free. Furthermore, we show that similarly to the quadratic case, an integral basis of is repeating periodically in m with period length depending on n.
期刊介绍:
The journal publishes original research papers on various fields of mathematics, e.g., algebra, algebraic geometry, analysis, combinatorics, dynamical systems, geometry, mathematical logic, mathematical statistics, number theory, probability theory, set theory, statistical physics and topology.