YouTube移动流媒体客户端的公共数据集

Theodoros Karagkioules, D. Tsilimantos, S. Valentin, Florian Wamser, Bernd Zeidler, Michael Seufert, Frank Loh, P. Tran-Gia
{"title":"YouTube移动流媒体客户端的公共数据集","authors":"Theodoros Karagkioules, D. Tsilimantos, S. Valentin, Florian Wamser, Bernd Zeidler, Michael Seufert, Frank Loh, P. Tran-Gia","doi":"10.23919/TMA.2018.8506503","DOIUrl":null,"url":null,"abstract":"Datasets are a valuable resource to analyze, model and optimize network traffic. This paper describes a new public dataset for YouTube's popular video streaming client on mobile devices. At the moment, we are providing 374 hours of time-synchronous measurements at the network, transport and application layer from two controlled environments in Europe. After describing our experimental design in detail, we discuss how to use our dataset for the analysis and optimization of HTTP Adaptive Streaming (HAS) traffic and point to specific use cases. To assure reproducibility and for community benefit, we publish the dataset at [1].","PeriodicalId":6607,"journal":{"name":"2018 Network Traffic Measurement and Analysis Conference (TMA)","volume":"35 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A Public Dataset for YouTube's Mobile Streaming Client\",\"authors\":\"Theodoros Karagkioules, D. Tsilimantos, S. Valentin, Florian Wamser, Bernd Zeidler, Michael Seufert, Frank Loh, P. Tran-Gia\",\"doi\":\"10.23919/TMA.2018.8506503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Datasets are a valuable resource to analyze, model and optimize network traffic. This paper describes a new public dataset for YouTube's popular video streaming client on mobile devices. At the moment, we are providing 374 hours of time-synchronous measurements at the network, transport and application layer from two controlled environments in Europe. After describing our experimental design in detail, we discuss how to use our dataset for the analysis and optimization of HTTP Adaptive Streaming (HAS) traffic and point to specific use cases. To assure reproducibility and for community benefit, we publish the dataset at [1].\",\"PeriodicalId\":6607,\"journal\":{\"name\":\"2018 Network Traffic Measurement and Analysis Conference (TMA)\",\"volume\":\"35 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Network Traffic Measurement and Analysis Conference (TMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/TMA.2018.8506503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Network Traffic Measurement and Analysis Conference (TMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/TMA.2018.8506503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

数据集是分析、建模和优化网络流量的宝贵资源。本文描述了一个新的公共数据集,用于YouTube在移动设备上流行的视频流客户端。目前,我们在欧洲的两个受控环境中提供了374小时的网络、传输和应用层时间同步测量。在详细描述了我们的实验设计之后,我们讨论了如何使用我们的数据集来分析和优化HTTP自适应流(HAS)流量,并指出具体的用例。为了确保可重复性和社区利益,我们将数据集发布在[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Public Dataset for YouTube's Mobile Streaming Client
Datasets are a valuable resource to analyze, model and optimize network traffic. This paper describes a new public dataset for YouTube's popular video streaming client on mobile devices. At the moment, we are providing 374 hours of time-synchronous measurements at the network, transport and application layer from two controlled environments in Europe. After describing our experimental design in detail, we discuss how to use our dataset for the analysis and optimization of HTTP Adaptive Streaming (HAS) traffic and point to specific use cases. To assure reproducibility and for community benefit, we publish the dataset at [1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Analysis of Network Measurements Through Machine Learning: The Power of the Crowd App for Dynamic Crowdsourced QoE Studies of HTTP Adaptive Streaming on Mobile Devices Dmap: Automating Domain Name Ecosystem Measurements and Applications Anycaston the Move: A Look at Mobile Anycast Performance A Second Screen Journey to the Cup: Twitter Dynamics During the Stanley Cup Playoffs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1