大西洋飓风路径和特征的模拟:一个耦合的机器学习方法

Rikhi Bose, A. Pintar, E. Simiu
{"title":"大西洋飓风路径和特征的模拟:一个耦合的机器学习方法","authors":"Rikhi Bose, A. Pintar, E. Simiu","doi":"10.1175/aies-d-22-0060.1","DOIUrl":null,"url":null,"abstract":"\nThe objective of this paper is to employ machine learning (ML) and deep learning (DL) techniques to obtain, from input data (storm features) available in or derived from the HURDAT2 database, models capable of simulating important hurricane properties (e.g., landfall location and wind speed) consistent with historical records. In pursuit of this objective, a trajectory model providing the storm center in terms of longitude and latitude, and intensity models providing the central pressure and maximum 1–min wind speed at 10m elevationwere created. The trajectory and intensity models are coupled and must be advanced together, six hours at a time, as the features that serve as inputs to the models at any given step depend on predictions at the previous time steps. Once a synthetic storm database is generated, properties of interest, such as the frequencies of large wind speeds may be extracted from any part of the simulation domain. The coupling of the trajectory and intensity models obviates the need for an intensity decay model inland of the coastline. Prediction results are compared to historical data, and the efficacy of the storm simulation models is evaluated at four sites: New Orleans, Miami, Cape Hatteras, and Boston.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Simulation of Atlantic Hurricane Tracks and Features: A Coupled Machine Learning Approach\",\"authors\":\"Rikhi Bose, A. Pintar, E. Simiu\",\"doi\":\"10.1175/aies-d-22-0060.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe objective of this paper is to employ machine learning (ML) and deep learning (DL) techniques to obtain, from input data (storm features) available in or derived from the HURDAT2 database, models capable of simulating important hurricane properties (e.g., landfall location and wind speed) consistent with historical records. In pursuit of this objective, a trajectory model providing the storm center in terms of longitude and latitude, and intensity models providing the central pressure and maximum 1–min wind speed at 10m elevationwere created. The trajectory and intensity models are coupled and must be advanced together, six hours at a time, as the features that serve as inputs to the models at any given step depend on predictions at the previous time steps. Once a synthetic storm database is generated, properties of interest, such as the frequencies of large wind speeds may be extracted from any part of the simulation domain. The coupling of the trajectory and intensity models obviates the need for an intensity decay model inland of the coastline. Prediction results are compared to historical data, and the efficacy of the storm simulation models is evaluated at four sites: New Orleans, Miami, Cape Hatteras, and Boston.\",\"PeriodicalId\":94369,\"journal\":{\"name\":\"Artificial intelligence for the earth systems\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence for the earth systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/aies-d-22-0060.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0060.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文的目标是利用机器学习(ML)和深度学习(DL)技术,从输入数据(风暴特征)中获得HURDAT2数据库中可用或衍生的模型,能够模拟与历史记录一致的重要飓风属性(例如,登陆位置和风速)。为了实现这一目标,我们创建了提供风暴中心经纬度的轨迹模型,以及提供10米海拔中心压力和最大1分钟风速的强度模型。轨迹和强度模型是耦合的,必须一起推进,每次6小时,因为在任何给定步骤中作为模型输入的特征依赖于前一个时间步骤的预测。一旦合成风暴数据库生成,就可以从模拟域的任何部分提取出感兴趣的属性,例如大风速的频率。轨迹和强度模型的耦合消除了对海岸线内陆强度衰减模型的需要。将预测结果与历史数据进行比较,并在新奥尔良、迈阿密、哈特拉斯角和波士顿四个地点评估风暴模拟模式的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation of Atlantic Hurricane Tracks and Features: A Coupled Machine Learning Approach
The objective of this paper is to employ machine learning (ML) and deep learning (DL) techniques to obtain, from input data (storm features) available in or derived from the HURDAT2 database, models capable of simulating important hurricane properties (e.g., landfall location and wind speed) consistent with historical records. In pursuit of this objective, a trajectory model providing the storm center in terms of longitude and latitude, and intensity models providing the central pressure and maximum 1–min wind speed at 10m elevationwere created. The trajectory and intensity models are coupled and must be advanced together, six hours at a time, as the features that serve as inputs to the models at any given step depend on predictions at the previous time steps. Once a synthetic storm database is generated, properties of interest, such as the frequencies of large wind speeds may be extracted from any part of the simulation domain. The coupling of the trajectory and intensity models obviates the need for an intensity decay model inland of the coastline. Prediction results are compared to historical data, and the efficacy of the storm simulation models is evaluated at four sites: New Orleans, Miami, Cape Hatteras, and Boston.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transferability and explainability of deep learning emulators for regional climate model projections: Perspectives for future applications Classification of ice particle shapes using machine learning on forward light scattering images Convolutional encoding and normalizing flows: a deep learning approach for offshore wind speed probabilistic forecasting in the Mediterranean Sea Neural networks to find the optimal forcing for offsetting the anthropogenic climate change effects Machine Learning Approach for Spatiotemporal Multivariate Optimization of Environmental Monitoring Sensor Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1