在一个典型的北美光伏和风能配电系统中,根据IEEE 519标准对谐波谐振模式进行失谐

S. Rangarajan, E. R. Collins, J. C. Fox
{"title":"在一个典型的北美光伏和风能配电系统中,根据IEEE 519标准对谐波谐振模式进行失谐","authors":"S. Rangarajan, E. R. Collins, J. C. Fox","doi":"10.1109/ICRERA.2017.8191099","DOIUrl":null,"url":null,"abstract":"The increase in penetration levels of distributed generators like PV and Wind in a distribution system makes the IEEE 519 standard to be a vital aspect towards power quality. The network resonance has been described by IEEE 519 as a major contributor towards the harmonic distortion. Non-linear loads such as transformers, machines, silicon-controlled rectifiers (SCRs), solid state devices, power transistors, microprocessors and computers also contribute towards the injection of harmonics into a distribution system. The interaction between all kinds of elements of distribution systems and inverter based distributed generators like PV and Wind impacts the resonance modes to a definite extent. Based on the harmonic levels from the components in the system, the paper brings out a contribution in the form of a detuning methodology applied to a practical system to eliminate the harmonics. This would further serve as a recommendation for all the utility personnel and researchers. An exemplary North American system has been considered for the study towards detuning process. The phenomenon of resonance and harmonic issues has been inspired from a real situation due to capacitor switching towards power factor correction associated with an induction motor operating as an industrial load. Normally detuning is done on the capacitor banks when non-linear loads are active contributors to harmonics. Nowadays with more renewable penetration, this paper explores the observation during the interaction of renewables with the rest of the elements and an effective solution in the form of detuning to eliminate it is presented.","PeriodicalId":6535,"journal":{"name":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","volume":"50 1","pages":"435-440"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Detuning of harmonic resonant modes in accordance with IEEE 519 standard in an exemplary north american distribution system with PV and wind\",\"authors\":\"S. Rangarajan, E. R. Collins, J. C. Fox\",\"doi\":\"10.1109/ICRERA.2017.8191099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increase in penetration levels of distributed generators like PV and Wind in a distribution system makes the IEEE 519 standard to be a vital aspect towards power quality. The network resonance has been described by IEEE 519 as a major contributor towards the harmonic distortion. Non-linear loads such as transformers, machines, silicon-controlled rectifiers (SCRs), solid state devices, power transistors, microprocessors and computers also contribute towards the injection of harmonics into a distribution system. The interaction between all kinds of elements of distribution systems and inverter based distributed generators like PV and Wind impacts the resonance modes to a definite extent. Based on the harmonic levels from the components in the system, the paper brings out a contribution in the form of a detuning methodology applied to a practical system to eliminate the harmonics. This would further serve as a recommendation for all the utility personnel and researchers. An exemplary North American system has been considered for the study towards detuning process. The phenomenon of resonance and harmonic issues has been inspired from a real situation due to capacitor switching towards power factor correction associated with an induction motor operating as an industrial load. Normally detuning is done on the capacitor banks when non-linear loads are active contributors to harmonics. Nowadays with more renewable penetration, this paper explores the observation during the interaction of renewables with the rest of the elements and an effective solution in the form of detuning to eliminate it is presented.\",\"PeriodicalId\":6535,\"journal\":{\"name\":\"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)\",\"volume\":\"50 1\",\"pages\":\"435-440\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRERA.2017.8191099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2017.8191099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

分布式发电机如光伏和风能在配电系统中的渗透程度越来越高,这使得IEEE 519标准成为电力质量的一个重要方面。IEEE 519将网络共振描述为谐波失真的主要原因。非线性负载,如变压器,机器,硅控整流器(scr),固态器件,功率晶体管,微处理器和计算机也有助于向配电系统注入谐波。配电系统各组成部分与光伏、风能等基于逆变器的分布式发电机组之间的相互作用对其谐振模式有一定的影响。基于系统中各分量的谐波水平,本文提出了一种应用于实际系统的失谐方法来消除谐波。这将进一步成为所有公用事业人员和研究人员的建议。对失谐过程的研究考虑了一个典型的北美系统。谐振现象和谐波问题的灵感来自于一个真实的情况,由于电容切换到功率因数校正与感应电机作为工业负载运行有关。当非线性负载是谐波的主动贡献者时,通常对电容器组进行失谐。在可再生能源越来越普及的今天,本文探讨了可再生能源与其他元素相互作用时的观察,并提出了一种以失谐形式消除它的有效解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detuning of harmonic resonant modes in accordance with IEEE 519 standard in an exemplary north american distribution system with PV and wind
The increase in penetration levels of distributed generators like PV and Wind in a distribution system makes the IEEE 519 standard to be a vital aspect towards power quality. The network resonance has been described by IEEE 519 as a major contributor towards the harmonic distortion. Non-linear loads such as transformers, machines, silicon-controlled rectifiers (SCRs), solid state devices, power transistors, microprocessors and computers also contribute towards the injection of harmonics into a distribution system. The interaction between all kinds of elements of distribution systems and inverter based distributed generators like PV and Wind impacts the resonance modes to a definite extent. Based on the harmonic levels from the components in the system, the paper brings out a contribution in the form of a detuning methodology applied to a practical system to eliminate the harmonics. This would further serve as a recommendation for all the utility personnel and researchers. An exemplary North American system has been considered for the study towards detuning process. The phenomenon of resonance and harmonic issues has been inspired from a real situation due to capacitor switching towards power factor correction associated with an induction motor operating as an industrial load. Normally detuning is done on the capacitor banks when non-linear loads are active contributors to harmonics. Nowadays with more renewable penetration, this paper explores the observation during the interaction of renewables with the rest of the elements and an effective solution in the form of detuning to eliminate it is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of AC link topologies in non-isolated DC/DC triple active bridge converter for current stress minimization Modelling and attitude control of a shrouded floating offshore wind turbine with hinged structure in extreme conditions Direct load control of air conditioners in Qatar: An empirical study Stochastic unit commitment considering Markov process of wind power forecast Primary and secondary voltage/frequency controller design for energy storage devices using consensus theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1