{"title":"从偏常环码出发的新量子码","authors":"Ram Krishna Verma, O. Prakash, A. Singh, H. Islam","doi":"10.3934/amc.2021028","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>For an odd prime <inline-formula><tex-math id=\"M1\">\\begin{document}$ p $\\end{document}</tex-math></inline-formula> and positive integers <inline-formula><tex-math id=\"M2\">\\begin{document}$ m $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\ell $\\end{document}</tex-math></inline-formula>, let <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\mathbb{F}_{p^m} $\\end{document}</tex-math></inline-formula> be the finite field with <inline-formula><tex-math id=\"M5\">\\begin{document}$ p^{m} $\\end{document}</tex-math></inline-formula> elements and <inline-formula><tex-math id=\"M6\">\\begin{document}$ R_{\\ell,m} = \\mathbb{F}_{p^m}[v_1,v_2,\\dots,v_{\\ell}]/\\langle v^{2}_{i}-1, v_{i}v_{j}-v_{j}v_{i}\\rangle_{1\\leq i, j\\leq \\ell} $\\end{document}</tex-math></inline-formula>. Thus <inline-formula><tex-math id=\"M7\">\\begin{document}$ R_{\\ell,m} $\\end{document}</tex-math></inline-formula> is a finite commutative non-chain ring of order <inline-formula><tex-math id=\"M8\">\\begin{document}$ p^{2^{\\ell} m} $\\end{document}</tex-math></inline-formula> with characteristic <inline-formula><tex-math id=\"M9\">\\begin{document}$ p $\\end{document}</tex-math></inline-formula>. In this paper, we aim to construct quantum codes from skew constacyclic codes over <inline-formula><tex-math id=\"M10\">\\begin{document}$ R_{\\ell,m} $\\end{document}</tex-math></inline-formula>. First, we discuss the structures of skew constacyclic codes and determine their Euclidean dual codes. Then a relation between these codes and their Euclidean duals has been obtained. Finally, with the help of a duality-preserving Gray map and the CSS construction, many MDS and better non-binary quantum codes are obtained as compared to the best-known quantum codes available in the literature.</p>","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"New quantum codes from skew constacyclic codes\",\"authors\":\"Ram Krishna Verma, O. Prakash, A. Singh, H. Islam\",\"doi\":\"10.3934/amc.2021028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>For an odd prime <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ p $\\\\end{document}</tex-math></inline-formula> and positive integers <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ m $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\ell $\\\\end{document}</tex-math></inline-formula>, let <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\mathbb{F}_{p^m} $\\\\end{document}</tex-math></inline-formula> be the finite field with <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ p^{m} $\\\\end{document}</tex-math></inline-formula> elements and <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ R_{\\\\ell,m} = \\\\mathbb{F}_{p^m}[v_1,v_2,\\\\dots,v_{\\\\ell}]/\\\\langle v^{2}_{i}-1, v_{i}v_{j}-v_{j}v_{i}\\\\rangle_{1\\\\leq i, j\\\\leq \\\\ell} $\\\\end{document}</tex-math></inline-formula>. Thus <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ R_{\\\\ell,m} $\\\\end{document}</tex-math></inline-formula> is a finite commutative non-chain ring of order <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ p^{2^{\\\\ell} m} $\\\\end{document}</tex-math></inline-formula> with characteristic <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ p $\\\\end{document}</tex-math></inline-formula>. In this paper, we aim to construct quantum codes from skew constacyclic codes over <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ R_{\\\\ell,m} $\\\\end{document}</tex-math></inline-formula>. First, we discuss the structures of skew constacyclic codes and determine their Euclidean dual codes. Then a relation between these codes and their Euclidean duals has been obtained. Finally, with the help of a duality-preserving Gray map and the CSS construction, many MDS and better non-binary quantum codes are obtained as compared to the best-known quantum codes available in the literature.</p>\",\"PeriodicalId\":50859,\"journal\":{\"name\":\"Advances in Mathematics of Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics of Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3934/amc.2021028\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics of Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3934/amc.2021028","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 12
摘要
For an odd prime \begin{document}$ p $\end{document} and positive integers \begin{document}$ m $\end{document} and \begin{document}$ \ell $\end{document}, let \begin{document}$ \mathbb{F}_{p^m} $\end{document} be the finite field with \begin{document}$ p^{m} $\end{document} elements and \begin{document}$ R_{\ell,m} = \mathbb{F}_{p^m}[v_1,v_2,\dots,v_{\ell}]/\langle v^{2}_{i}-1, v_{i}v_{j}-v_{j}v_{i}\rangle_{1\leq i, j\leq \ell} $\end{document}. Thus \begin{document}$ R_{\ell,m} $\end{document} is a finite commutative non-chain ring of order \begin{document}$ p^{2^{\ell} m} $\end{document} with characteristic \begin{document}$ p $\end{document}. In this paper, we aim to construct quantum codes from skew constacyclic codes over \begin{document}$ R_{\ell,m} $\end{document}. First, we discuss the structures of skew constacyclic codes and determine their Euclidean dual codes. Then a relation between these codes and their Euclidean duals has been obtained. Finally, with the help of a duality-preserving Gray map and the CSS construction, many MDS and better non-binary quantum codes are obtained as compared to the best-known quantum codes available in the literature.
For an odd prime \begin{document}$ p $\end{document} and positive integers \begin{document}$ m $\end{document} and \begin{document}$ \ell $\end{document}, let \begin{document}$ \mathbb{F}_{p^m} $\end{document} be the finite field with \begin{document}$ p^{m} $\end{document} elements and \begin{document}$ R_{\ell,m} = \mathbb{F}_{p^m}[v_1,v_2,\dots,v_{\ell}]/\langle v^{2}_{i}-1, v_{i}v_{j}-v_{j}v_{i}\rangle_{1\leq i, j\leq \ell} $\end{document}. Thus \begin{document}$ R_{\ell,m} $\end{document} is a finite commutative non-chain ring of order \begin{document}$ p^{2^{\ell} m} $\end{document} with characteristic \begin{document}$ p $\end{document}. In this paper, we aim to construct quantum codes from skew constacyclic codes over \begin{document}$ R_{\ell,m} $\end{document}. First, we discuss the structures of skew constacyclic codes and determine their Euclidean dual codes. Then a relation between these codes and their Euclidean duals has been obtained. Finally, with the help of a duality-preserving Gray map and the CSS construction, many MDS and better non-binary quantum codes are obtained as compared to the best-known quantum codes available in the literature.
期刊介绍:
Advances in Mathematics of Communications (AMC) publishes original research papers of the highest quality in all areas of mathematics and computer science which are relevant to applications in communications technology. For this reason, submissions from many areas of mathematics are invited, provided these show a high level of originality, new techniques, an innovative approach, novel methodologies, or otherwise a high level of depth and sophistication. Any work that does not conform to these standards will be rejected.
Areas covered include coding theory, cryptology, combinatorics, finite geometry, algebra and number theory, but are not restricted to these. This journal also aims to cover the algorithmic and computational aspects of these disciplines. Hence, all mathematics and computer science contributions of appropriate depth and relevance to the above mentioned applications in communications technology are welcome.
More detailed indication of the journal''s scope is given by the subject interests of the members of the board of editors.