带协变量的多臂土匪仿真研究(特邀论文)

N. Pavlidis, D. Tasoulis, D. Hand
{"title":"带协变量的多臂土匪仿真研究(特邀论文)","authors":"N. Pavlidis, D. Tasoulis, D. Hand","doi":"10.1109/UKSIM.2008.86","DOIUrl":null,"url":null,"abstract":"We evaluate the performance of a number of action-selection methods on the multi-armed bandit problem with covariates. We resort to simulations because our primary concern is the speed with which the different methods identify the optimal policy, and not their asymptotic behaviour. The experimental results show that the performance of the ε-greedy methods is robust, while the interval estimation strategies achieve the fastest learning of the optimal policy. We propose a metric to quantify the difficulty of a multi-armed bandit problem with covariates and show that there is a trade-off between the satisfaction of the different performance measures.","PeriodicalId":22356,"journal":{"name":"Tenth International Conference on Computer Modeling and Simulation (uksim 2008)","volume":"38 1","pages":"493-498"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Simulation Studies of Multi-armed Bandits with Covariates (Invited Paper)\",\"authors\":\"N. Pavlidis, D. Tasoulis, D. Hand\",\"doi\":\"10.1109/UKSIM.2008.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We evaluate the performance of a number of action-selection methods on the multi-armed bandit problem with covariates. We resort to simulations because our primary concern is the speed with which the different methods identify the optimal policy, and not their asymptotic behaviour. The experimental results show that the performance of the ε-greedy methods is robust, while the interval estimation strategies achieve the fastest learning of the optimal policy. We propose a metric to quantify the difficulty of a multi-armed bandit problem with covariates and show that there is a trade-off between the satisfaction of the different performance measures.\",\"PeriodicalId\":22356,\"journal\":{\"name\":\"Tenth International Conference on Computer Modeling and Simulation (uksim 2008)\",\"volume\":\"38 1\",\"pages\":\"493-498\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tenth International Conference on Computer Modeling and Simulation (uksim 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKSIM.2008.86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tenth International Conference on Computer Modeling and Simulation (uksim 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKSIM.2008.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

我们评估了一些行动选择方法在带协变量的多臂盗匪问题上的性能。我们求助于模拟,因为我们主要关注的是不同方法识别最优策略的速度,而不是它们的渐近行为。实验结果表明,ε-贪心方法具有较好的鲁棒性,而区间估计策略的学习速度最快。我们提出了一个度量来量化带有协变量的多臂强盗问题的难度,并表明在不同性能度量的满意度之间存在权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation Studies of Multi-armed Bandits with Covariates (Invited Paper)
We evaluate the performance of a number of action-selection methods on the multi-armed bandit problem with covariates. We resort to simulations because our primary concern is the speed with which the different methods identify the optimal policy, and not their asymptotic behaviour. The experimental results show that the performance of the ε-greedy methods is robust, while the interval estimation strategies achieve the fastest learning of the optimal policy. We propose a metric to quantify the difficulty of a multi-armed bandit problem with covariates and show that there is a trade-off between the satisfaction of the different performance measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ICCMS 2022: The 14th International Conference on Computer Modeling and Simulation, Chongqing, China, June 24 - 26, 2022 ICCMS 2021: The 13th International Conference on Computer Modeling and Simulation, Melbourne, VIC, Australia, June 25 - 27, 2021 Wheelchair Navigation System using Node Combination Technique for People with Motor Disabilities Reaeration and Dispersion Coefficients Prediction for a River Flow by Implementing Machine Learning Algorithm on MIKE Dataset ICCMS '20: The 12th International Conference on Computer Modeling and Simulation, Brisbane, QLD, Australia, June 22-24, 2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1