{"title":"基于储氢的智能直流微电网的运行","authors":"Mahesh Kumar","doi":"10.4018/978-1-6684-4012-4.ch005","DOIUrl":null,"url":null,"abstract":"In this chapter, the author presents the operation and power management of the hydrogen storage-based smart DC microgrid (DCMG). In this microgrid, several renewable distributed generations (DGs) such as wind turbine, solar photovoltaic system, solid oxide fuel cell (SOFC), and battery energy storage system are interconnected together and to the various DC and AC loads to form a ring-type low voltage distribution network. An additional storage as Hydrogen storage system has been connected to the dc microgrid for balancing the power at all times in the DCMG, under islanded mode operation, for all practical cases. An architecture of the hydrogen storage-based DC microgrid is suggested mainly for the remote rural area. For the regeneration of the electricity from the stored hydrogen, a SOFC DG system is also used in the proposed DCMG. A control technique is also developed for the operation of the hydrogen storage-based DCMG. The proposed DCMG system provides a reliable and high-quality power supply and will supply the power to all loads (both DC and AC) simultaneously.","PeriodicalId":7235,"journal":{"name":"Advances in Environmental Engineering and Green Technologies","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operation of a Hydrogen Storage-Based Smart DC Microgrid\",\"authors\":\"Mahesh Kumar\",\"doi\":\"10.4018/978-1-6684-4012-4.ch005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, the author presents the operation and power management of the hydrogen storage-based smart DC microgrid (DCMG). In this microgrid, several renewable distributed generations (DGs) such as wind turbine, solar photovoltaic system, solid oxide fuel cell (SOFC), and battery energy storage system are interconnected together and to the various DC and AC loads to form a ring-type low voltage distribution network. An additional storage as Hydrogen storage system has been connected to the dc microgrid for balancing the power at all times in the DCMG, under islanded mode operation, for all practical cases. An architecture of the hydrogen storage-based DC microgrid is suggested mainly for the remote rural area. For the regeneration of the electricity from the stored hydrogen, a SOFC DG system is also used in the proposed DCMG. A control technique is also developed for the operation of the hydrogen storage-based DCMG. The proposed DCMG system provides a reliable and high-quality power supply and will supply the power to all loads (both DC and AC) simultaneously.\",\"PeriodicalId\":7235,\"journal\":{\"name\":\"Advances in Environmental Engineering and Green Technologies\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Environmental Engineering and Green Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-6684-4012-4.ch005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Environmental Engineering and Green Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-6684-4012-4.ch005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Operation of a Hydrogen Storage-Based Smart DC Microgrid
In this chapter, the author presents the operation and power management of the hydrogen storage-based smart DC microgrid (DCMG). In this microgrid, several renewable distributed generations (DGs) such as wind turbine, solar photovoltaic system, solid oxide fuel cell (SOFC), and battery energy storage system are interconnected together and to the various DC and AC loads to form a ring-type low voltage distribution network. An additional storage as Hydrogen storage system has been connected to the dc microgrid for balancing the power at all times in the DCMG, under islanded mode operation, for all practical cases. An architecture of the hydrogen storage-based DC microgrid is suggested mainly for the remote rural area. For the regeneration of the electricity from the stored hydrogen, a SOFC DG system is also used in the proposed DCMG. A control technique is also developed for the operation of the hydrogen storage-based DCMG. The proposed DCMG system provides a reliable and high-quality power supply and will supply the power to all loads (both DC and AC) simultaneously.