Maoqing Tian, Lu Zhang, Yujuan Wang, Meili Deng, Cancan Peng, W. Liang, G. Ding, Bo Shen, Huiming Wang
{"title":"jnk相关亮氨酸拉链蛋白的缺失促进腹膜透析相关的腹膜纤维化","authors":"Maoqing Tian, Lu Zhang, Yujuan Wang, Meili Deng, Cancan Peng, W. Liang, G. Ding, Bo Shen, Huiming Wang","doi":"10.1159/000521564","DOIUrl":null,"url":null,"abstract":"Background: Peritoneal dialysis-related peritoneal fibrosis is the leading cause of peritoneal ultrafiltration failure. Multitude factors and pathological processes have been implicated in peritoneal fibrosis development and progression, whereas the intrinsic anti-fibrotic mechanism has rarely been explored. JNK-associated leucine zipper protein (JLP) has been recently found possessing powerful anti-fibrotic merits of overall antagonizing TGF-β-induced profibrotic effects. Objectives: We wondered whether JLP is expressed in the peritoneum, and if so, whether it exerts the anti-fibrotic effects similar to those in the kidney. Method: Here, we examined and confirmed JLP expression in peritoneum tissue of mice. Then, we established a peritoneal fibrosis model in Jlp wild-type and Jlp global deficient mice and observed the different effects of Jlp on peritoneal fibrosis progression. In vitro studies were performed on peritoneal mesothelial HMrSV5 cells with or without Jlp knockdown to investigate the underlying mechanism by which Jlp exerts anti-fibrotic effects. Results: We found that the expression of JLP decreased in a high-glucose peritoneal dialysis solution (HGPDS)-induced peritoneal fibrosis mouse model and in HGPDS-treated peritoneal mesothelial cell HMrSV5. JLP deletion exacerbated HGPDS-induced peritoneal fibrosis in peritoneal fibrosis mice, and knockdown of JLP resulted in an increased profibrotic response to HGPDS stimulation in HMrSV5 cells, which was associated with epithelial-to-mesenchymal transition, elevated autophagy, and apoptosis, as well as enhanced TGF-β1/Smad signaling activation. Conclusions: Our findings revealed a new anti-fibrotic factor of Jlp involved in peritoneal fibrosis induction and shed light on novel therapeutic targets in peritoneal ultrafiltration failure.","PeriodicalId":17830,"journal":{"name":"Kidney Diseases","volume":"40 1","pages":"168 - 179"},"PeriodicalIF":3.2000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Loss of JNK-Associated Leucine Zipper Protein Promotes Peritoneal Dialysis-Related Peritoneal Fibrosis\",\"authors\":\"Maoqing Tian, Lu Zhang, Yujuan Wang, Meili Deng, Cancan Peng, W. Liang, G. Ding, Bo Shen, Huiming Wang\",\"doi\":\"10.1159/000521564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Peritoneal dialysis-related peritoneal fibrosis is the leading cause of peritoneal ultrafiltration failure. Multitude factors and pathological processes have been implicated in peritoneal fibrosis development and progression, whereas the intrinsic anti-fibrotic mechanism has rarely been explored. JNK-associated leucine zipper protein (JLP) has been recently found possessing powerful anti-fibrotic merits of overall antagonizing TGF-β-induced profibrotic effects. Objectives: We wondered whether JLP is expressed in the peritoneum, and if so, whether it exerts the anti-fibrotic effects similar to those in the kidney. Method: Here, we examined and confirmed JLP expression in peritoneum tissue of mice. Then, we established a peritoneal fibrosis model in Jlp wild-type and Jlp global deficient mice and observed the different effects of Jlp on peritoneal fibrosis progression. In vitro studies were performed on peritoneal mesothelial HMrSV5 cells with or without Jlp knockdown to investigate the underlying mechanism by which Jlp exerts anti-fibrotic effects. Results: We found that the expression of JLP decreased in a high-glucose peritoneal dialysis solution (HGPDS)-induced peritoneal fibrosis mouse model and in HGPDS-treated peritoneal mesothelial cell HMrSV5. JLP deletion exacerbated HGPDS-induced peritoneal fibrosis in peritoneal fibrosis mice, and knockdown of JLP resulted in an increased profibrotic response to HGPDS stimulation in HMrSV5 cells, which was associated with epithelial-to-mesenchymal transition, elevated autophagy, and apoptosis, as well as enhanced TGF-β1/Smad signaling activation. Conclusions: Our findings revealed a new anti-fibrotic factor of Jlp involved in peritoneal fibrosis induction and shed light on novel therapeutic targets in peritoneal ultrafiltration failure.\",\"PeriodicalId\":17830,\"journal\":{\"name\":\"Kidney Diseases\",\"volume\":\"40 1\",\"pages\":\"168 - 179\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kidney Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000521564\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000521564","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
Loss of JNK-Associated Leucine Zipper Protein Promotes Peritoneal Dialysis-Related Peritoneal Fibrosis
Background: Peritoneal dialysis-related peritoneal fibrosis is the leading cause of peritoneal ultrafiltration failure. Multitude factors and pathological processes have been implicated in peritoneal fibrosis development and progression, whereas the intrinsic anti-fibrotic mechanism has rarely been explored. JNK-associated leucine zipper protein (JLP) has been recently found possessing powerful anti-fibrotic merits of overall antagonizing TGF-β-induced profibrotic effects. Objectives: We wondered whether JLP is expressed in the peritoneum, and if so, whether it exerts the anti-fibrotic effects similar to those in the kidney. Method: Here, we examined and confirmed JLP expression in peritoneum tissue of mice. Then, we established a peritoneal fibrosis model in Jlp wild-type and Jlp global deficient mice and observed the different effects of Jlp on peritoneal fibrosis progression. In vitro studies were performed on peritoneal mesothelial HMrSV5 cells with or without Jlp knockdown to investigate the underlying mechanism by which Jlp exerts anti-fibrotic effects. Results: We found that the expression of JLP decreased in a high-glucose peritoneal dialysis solution (HGPDS)-induced peritoneal fibrosis mouse model and in HGPDS-treated peritoneal mesothelial cell HMrSV5. JLP deletion exacerbated HGPDS-induced peritoneal fibrosis in peritoneal fibrosis mice, and knockdown of JLP resulted in an increased profibrotic response to HGPDS stimulation in HMrSV5 cells, which was associated with epithelial-to-mesenchymal transition, elevated autophagy, and apoptosis, as well as enhanced TGF-β1/Smad signaling activation. Conclusions: Our findings revealed a new anti-fibrotic factor of Jlp involved in peritoneal fibrosis induction and shed light on novel therapeutic targets in peritoneal ultrafiltration failure.
期刊介绍:
''Kidney Diseases'' aims to provide a platform for Asian and Western research to further and support communication and exchange of knowledge. Review articles cover the most recent clinical and basic science relevant to the entire field of nephrological disorders, including glomerular diseases, acute and chronic kidney injury, tubulo-interstitial disease, hypertension and metabolism-related disorders, end-stage renal disease, and genetic kidney disease. Special articles are prepared by two authors, one from East and one from West, which compare genetics, epidemiology, diagnosis methods, and treatment options of a disease.