根据作用方式区分毒物类别:地理物理化学描述符

M. Nendza, Martin Müller
{"title":"根据作用方式区分毒物类别:地理物理化学描述符","authors":"M. Nendza, Martin Müller","doi":"10.1002/1521-3838(200012)19:6<581::AID-QSAR581>3.0.CO;2-A","DOIUrl":null,"url":null,"abstract":"Environmental contaminants with common mode of toxic action (MOA) are generally expected to have similar structures and/or physico-chemical properties. Calculated descriptors of lipophilic, electronic and steric properties were used to cluster 115 test chemicals by MOA into nine different toxicant classes (non-polar non-specific toxicants, polar non-specific toxicants, uncouplers of oxidative phosphorylation, inhibitors of photosynthesis, inhibitors of acetylcholinesterase, inhibitors of respiration, thiol-alkylating agents, reactives (irritants), estrogenic compounds). Stepwise discriminant analysis of the test chemicals resulted in 89.6% correct classifications into the MOA classes. The final model uses 10 significant variables (log KOW, eHOMO, V+, QAV, HMAX+, MR, MW, DEFF, SASA, SAVOL). PLS discriminant analysis of the same data set resulted in a three-component model with r=0.89; the variables with the highest discriminatory power are log KOW, HMAX+, DEFF and QAV. Each MOA class reveals a characteristic profile in physico-chemical properties. Deviations relative to non-specific baseline toxicants are specific for each MOA class and reflect the structural dependences of the rate-limiting interactions that are causing the respective toxicities (functional similarity). By combining physiological and chemical knowledge about underlying processes, it is possible to indicate descriptor-based discrimination criteria by MOA as an essential prerequisite for rational selection and application of process-related QSARS for predictive purposes.","PeriodicalId":20818,"journal":{"name":"Quantitative Structure-activity Relationships","volume":"33 1","pages":"581-598"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Discriminating Toxicant Classes by Mode of Action: 2. Physico‐Chemical Descriptors\",\"authors\":\"M. Nendza, Martin Müller\",\"doi\":\"10.1002/1521-3838(200012)19:6<581::AID-QSAR581>3.0.CO;2-A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental contaminants with common mode of toxic action (MOA) are generally expected to have similar structures and/or physico-chemical properties. Calculated descriptors of lipophilic, electronic and steric properties were used to cluster 115 test chemicals by MOA into nine different toxicant classes (non-polar non-specific toxicants, polar non-specific toxicants, uncouplers of oxidative phosphorylation, inhibitors of photosynthesis, inhibitors of acetylcholinesterase, inhibitors of respiration, thiol-alkylating agents, reactives (irritants), estrogenic compounds). Stepwise discriminant analysis of the test chemicals resulted in 89.6% correct classifications into the MOA classes. The final model uses 10 significant variables (log KOW, eHOMO, V+, QAV, HMAX+, MR, MW, DEFF, SASA, SAVOL). PLS discriminant analysis of the same data set resulted in a three-component model with r=0.89; the variables with the highest discriminatory power are log KOW, HMAX+, DEFF and QAV. Each MOA class reveals a characteristic profile in physico-chemical properties. Deviations relative to non-specific baseline toxicants are specific for each MOA class and reflect the structural dependences of the rate-limiting interactions that are causing the respective toxicities (functional similarity). By combining physiological and chemical knowledge about underlying processes, it is possible to indicate descriptor-based discrimination criteria by MOA as an essential prerequisite for rational selection and application of process-related QSARS for predictive purposes.\",\"PeriodicalId\":20818,\"journal\":{\"name\":\"Quantitative Structure-activity Relationships\",\"volume\":\"33 1\",\"pages\":\"581-598\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Structure-activity Relationships\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/1521-3838(200012)19:6<581::AID-QSAR581>3.0.CO;2-A\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Structure-activity Relationships","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1521-3838(200012)19:6<581::AID-QSAR581>3.0.CO;2-A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

具有共同毒性作用模式(MOA)的环境污染物通常具有相似的结构和/或物理化学性质。通过MOA计算出的亲脂性、电子性和位阻性描述符,将115种测试化学品归类为9种不同的毒物类别(非极性非特异性毒物、极性非特异性毒物、氧化磷酸化解偶联剂、光合作用抑制剂、乙酰胆碱酯酶抑制剂、呼吸抑制剂、硫醇烷基化剂、反应性(刺激物)、雌激素化合物)。逐步判别分析的结果表明,89.6%的测试化学品被正确分类为MOA类。最终模型使用10个显著变量(log KOW, eHOMO, V+, QAV, HMAX+, MR, MW, DEFF, SASA, SAVOL)。同一数据集的PLS判别分析结果为三成分模型,r=0.89;区分力最大的变量是log KOW、HMAX+、DEFF和QAV。每个MOA类都显示出其物理化学性质的特征。相对于非特异性基线毒物的偏差对于每一类MOA都是特定的,反映了导致各自毒性的限速相互作用的结构依赖性(功能相似性)。通过结合对潜在过程的生理和化学知识,MOA有可能指出基于描述符的区分标准,作为合理选择和应用过程相关QSARS的必要前提。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discriminating Toxicant Classes by Mode of Action: 2. Physico‐Chemical Descriptors
Environmental contaminants with common mode of toxic action (MOA) are generally expected to have similar structures and/or physico-chemical properties. Calculated descriptors of lipophilic, electronic and steric properties were used to cluster 115 test chemicals by MOA into nine different toxicant classes (non-polar non-specific toxicants, polar non-specific toxicants, uncouplers of oxidative phosphorylation, inhibitors of photosynthesis, inhibitors of acetylcholinesterase, inhibitors of respiration, thiol-alkylating agents, reactives (irritants), estrogenic compounds). Stepwise discriminant analysis of the test chemicals resulted in 89.6% correct classifications into the MOA classes. The final model uses 10 significant variables (log KOW, eHOMO, V+, QAV, HMAX+, MR, MW, DEFF, SASA, SAVOL). PLS discriminant analysis of the same data set resulted in a three-component model with r=0.89; the variables with the highest discriminatory power are log KOW, HMAX+, DEFF and QAV. Each MOA class reveals a characteristic profile in physico-chemical properties. Deviations relative to non-specific baseline toxicants are specific for each MOA class and reflect the structural dependences of the rate-limiting interactions that are causing the respective toxicities (functional similarity). By combining physiological and chemical knowledge about underlying processes, it is possible to indicate descriptor-based discrimination criteria by MOA as an essential prerequisite for rational selection and application of process-related QSARS for predictive purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstracts of publications related to QASR Mechanistic Study on N‐Demethylation Catalyzed with P450 by Quantitative Structure Activity Relationship using Electronic Properties of 4‐Substituted N,N‐Dimethylaniline 3D QSAR of Serotonin Transporter Ligands: CoMFA and CoMSIA Studies Scaffold Searching: Automated Identification of Similar Ring Systems for the Design of Combinatorial Libraries Theoretical Prediction of the Phenoxyl Radical Formation Capacity and Cyclooxygenase Inhibition Relationships by Phenolic Compounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1