不同led光谱方案对白桦生长发育的影响。和离体培养的红毛茛

P. Evlakov, Tat'yana Grodeckaya, O. Fedorova, R. Shestakov, O. Baranov
{"title":"不同led光谱方案对白桦生长发育的影响。和离体培养的红毛茛","authors":"P. Evlakov, Tat'yana Grodeckaya, O. Fedorova, R. Shestakov, O. Baranov","doi":"10.34220/issn.2222-7962/2022.4/2","DOIUrl":null,"url":null,"abstract":"Light-emitting diodes (LEDs) have shown high efficiency in growing plants both in vivo in greenhouses and in vitro, including clonal micropropagation. The purpose of this study was to analyze the effect of the spectral composition of LED irradiators with different proportions of red (RL) and blue (BL) light on the morphogenesis of microplants of the remontant form of common raspberry (Rubus idaeus L.) cv. Hercules and the selection valuable cultivar of downy birch (Betula pubescens Ehrh.), which is the object of a unified genetic breeding complex (UGBC), previously selected on the basis of drought resistance. In the variant 1, the RL/BL ratio was 80/20%, in the variant 2 it was 70/30%, in the control it was 50/50%. The LED in variant 1 contributed to the greatest increase in morphometric and anatomical characteristics in raspberry microplants, increasing the height of shoots, the number of leaves, stomata density, the height of the leaf epidermis and mesophyll. At the same time, an increase in the proportion of RL/BL led to an increase in the leaf area, leaf surface, and stomatal density in birch microclones; however, the anatomical characteristics of the leaf indicate a decrease in the height of epidermal cells and the size of mesophyll cells. Thus, the LED of option 1 can be recommended for use in clonal micropropagation of raspberries in greenhouses, to optimize growth processes and obtain healthy, normally formed plants, while birch requires additional selection of optimal spectral illumination conditions.","PeriodicalId":12425,"journal":{"name":"Forestry Engineering Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of different led spectrum regimens on growth and development of Betula pubescens Ehrh. and Rubus idaeus L. in culture in vitro\",\"authors\":\"P. Evlakov, Tat'yana Grodeckaya, O. Fedorova, R. Shestakov, O. Baranov\",\"doi\":\"10.34220/issn.2222-7962/2022.4/2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light-emitting diodes (LEDs) have shown high efficiency in growing plants both in vivo in greenhouses and in vitro, including clonal micropropagation. The purpose of this study was to analyze the effect of the spectral composition of LED irradiators with different proportions of red (RL) and blue (BL) light on the morphogenesis of microplants of the remontant form of common raspberry (Rubus idaeus L.) cv. Hercules and the selection valuable cultivar of downy birch (Betula pubescens Ehrh.), which is the object of a unified genetic breeding complex (UGBC), previously selected on the basis of drought resistance. In the variant 1, the RL/BL ratio was 80/20%, in the variant 2 it was 70/30%, in the control it was 50/50%. The LED in variant 1 contributed to the greatest increase in morphometric and anatomical characteristics in raspberry microplants, increasing the height of shoots, the number of leaves, stomata density, the height of the leaf epidermis and mesophyll. At the same time, an increase in the proportion of RL/BL led to an increase in the leaf area, leaf surface, and stomatal density in birch microclones; however, the anatomical characteristics of the leaf indicate a decrease in the height of epidermal cells and the size of mesophyll cells. Thus, the LED of option 1 can be recommended for use in clonal micropropagation of raspberries in greenhouses, to optimize growth processes and obtain healthy, normally formed plants, while birch requires additional selection of optimal spectral illumination conditions.\",\"PeriodicalId\":12425,\"journal\":{\"name\":\"Forestry Engineering Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forestry Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34220/issn.2222-7962/2022.4/2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forestry Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34220/issn.2222-7962/2022.4/2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

发光二极管(led)在温室和离体植物生长中都显示出高效率,包括无性系微繁。本研究的目的是分析不同红蓝比例LED光源的光谱组成对普通覆盆子(Rubus idaeus L.)残种微植物形态发生的影响。Hercules和选择有价值的白桦品种(Betula pubescens Ehrh.),这是一个统一的遗传育种复合体(UGBC)的对象,以前选择的基础是抗旱性。在变型1中,RL/BL比率为80/20%,在变型2中为70/30%,在对照中为50/50%。变异1的LED对覆盆子微植株形态和解剖特征的提高贡献最大,增加了芽高、叶片数量、气孔密度、叶表皮和叶肉高度。同时,随着RL/BL比例的增加,白桦微无性系的叶面积、叶表面积和气孔密度均有所增加;然而,叶片的解剖特征表明表皮细胞的高度和叶肉细胞的大小都在下降。因此,选项1的LED可以推荐用于温室中覆盆子的无性繁殖,以优化生长过程并获得健康,正常形成的植物,而桦树需要额外选择最佳的光谱照明条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of different led spectrum regimens on growth and development of Betula pubescens Ehrh. and Rubus idaeus L. in culture in vitro
Light-emitting diodes (LEDs) have shown high efficiency in growing plants both in vivo in greenhouses and in vitro, including clonal micropropagation. The purpose of this study was to analyze the effect of the spectral composition of LED irradiators with different proportions of red (RL) and blue (BL) light on the morphogenesis of microplants of the remontant form of common raspberry (Rubus idaeus L.) cv. Hercules and the selection valuable cultivar of downy birch (Betula pubescens Ehrh.), which is the object of a unified genetic breeding complex (UGBC), previously selected on the basis of drought resistance. In the variant 1, the RL/BL ratio was 80/20%, in the variant 2 it was 70/30%, in the control it was 50/50%. The LED in variant 1 contributed to the greatest increase in morphometric and anatomical characteristics in raspberry microplants, increasing the height of shoots, the number of leaves, stomata density, the height of the leaf epidermis and mesophyll. At the same time, an increase in the proportion of RL/BL led to an increase in the leaf area, leaf surface, and stomatal density in birch microclones; however, the anatomical characteristics of the leaf indicate a decrease in the height of epidermal cells and the size of mesophyll cells. Thus, the LED of option 1 can be recommended for use in clonal micropropagation of raspberries in greenhouses, to optimize growth processes and obtain healthy, normally formed plants, while birch requires additional selection of optimal spectral illumination conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of process-based modelling for interpretation of stable isotope variations in tree rings Structure of high elevation forests in Katunsky Range (the Altai Mountains) Miyake events: a review of the state-of-the-art The effect of volcanic eruptions on the radial growth of trees in the forests of the Mari El Republic Assessment of the impact of radiation contamination on radial growth of petiole oak in the Alekseevskoye lesnichestvo of Belgorod oblast
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1