STAT3和mTOR:协同驱动HIF和血管生成

K. Dodd, A. Tee
{"title":"STAT3和mTOR:协同驱动HIF和血管生成","authors":"K. Dodd, A. Tee","doi":"10.18632/ONCOSCIENCE.272","DOIUrl":null,"url":null,"abstract":"Our understanding of angiogenic signalling has been significantly enhanced through studies of a rare genetic disorder called Tuberous Sclerosis Complex (TSC). TSC patients are predisposed to highly vascularised tumours, where renal angiomyolipomas produce high levels of vascular endothelial growth factor (VEGF) that can be readily detected. It is well established that VEGF is driven through hypoxic signalling, with the transcription factor hypoxia inducible factor-1α (HIF-1α) playing a crucial role in its expression. Early studies using cell line models of TSC uncovered that the mammalian target of rapamycin complex 1 (mTORC1) is a key mediator of HIF-1α synthesis, and highlighted the anti-angiogenic properties of mTORC1 inhibitors [1]. Herein we review our recent findings characterising mTORC1 mediated regulation of HIF-1α and discuss the clinical implications of our work. \n \nWe demonstrated that mTORC1 drives HIF-1α expression via three mechanisms, promoting not only the transcription of HIF-1α mRNA via signal transducer and activator of transcription 3 (STAT3), but also its translation via both eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). This drive in HIF-1α activity downstream of mTORC1 explains why the tumours which present in TSC are so heavily vascularised, and accounts for the anti-tumorigenic properties of mTOR inhibitors used in this setting. In concordance with this, we observe a 10 fold-increase in HIF-1α transcriptional activity under hypoxia with TSC2 loss, highlighting the significant impact mTORC1 activation can have on HIF-1α. \n \nWhilst mTORC1 can promote the transcriptional activity of STAT3 through direct phosphorylation of Ser727, STAT3 is also subject to regulation from a number of different cytokines and growth factors which signal through the receptor tyrosine kinase JAK2 [2]. Both JAK2/STAT3 and mTORC1 signalling pathways are frequently activated in a wide range of malignancies and converge at the level of HIF-1α (see Figure ​Figure1).1). Whilst mTOR inhibitors are effective at blocking Ser727 phosphorylation of STAT3, we were able to completely abolish HIF-1α expression by targeting both the JAK2-mediated Tyr705 phosphorylation site and the mTORC1-mediated Ser727 site. Our work indicates that targeting STAT3 in parallel to mTORC1 could enhance the anti-angiogenic and anti-tumorigenic properties of mTOR inhibitors that are currently in clinical use [3]. \n \n \n \nFigure 1 \n \nMultifaceted regulation of HIF-1α/VEGF-A via mTORC1 and STAT3 \n \n \n \nGrowth of tumours in renal cell carcinoma (RCC) is highly dependent on mTORC1, HIF and VEGF which drive a pro-angiogenic response. In the microenvironment of the kidney, angiogenic signalling is crucial for metabolic transformation and malignancy. Although there has been much investment into drug discovery and the development of inhibitors that directly inhibit HIF, none of these compounds are currently suitable for clinical use. Consequently, current angiogenic therapies have been mainly restricted to inhibition of mTORC1 and the VEGF-receptor (VEGFR). Given that our work now positions STAT3 as an immediate upstream regulator of HIF, drug targeting of STAT3 may be an alternative therapeutic strategy for the treatment of vascularized tumours. \n \nWe also identified STAT3 as a common point of convergence for many receptor tyrosine kinases involved in the angiogenic response within Neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs) [4], reflecting the wider implications of this work. We uncovered that STAT3 inhibition or shRNA knockdown was sufficient to completely ablate expression of HIF-1α, HIF-2α and VEGF-A. Previous studies indicated that rapamycin repressed the growth of NF1-associated malignancies, but with minimal effects upon HIF-1α expression indicating that STAT3 primarily drives HIF-1α activity in NF1 [5]. STAT3 is considered an oncogene and mediates a range of cellular processes associated with tumourigenesis, increasing its appeal as a potential therapeutic target [2]. In keeping with this, knockdown of STAT3 inhibited cell migration and blocked tumour spheroid formation in a range of different MPNST cell lines tested [4]. \n \nA current limitation of anti-angiogenic therapies targeting the VEGF receptor (VEGFR) is acquired drug resistance. This occurs through activation of compensatory signalling pathways coordinating tumour revascularisation, where a multitude of pro-angiogenic factors (such as VEGF, FGFs, EGF, and IL-8 (as well as others)) signal through a network of target receptor tyrosine kinases (RTK) to elicit the pro-angiogenic response. Consequently, angiogenic signalling is highly flexible and driven through cross-talk between multiple RTKs. This level of flexibility hampers current tyrosine kinase inhibitor therapies [6]. Given that STAT3 is a common downstream target of multiple RTKs, acquired resistance may be less of a problem in this setting. STAT3 is also fairly indispensable in normal cellular function, suggesting that the side effect profile of STAT3 inhibitors should be low. Collectively, our work highlights the need for the development of clinically available STAT3 inhibitors for cancer therapy.","PeriodicalId":94164,"journal":{"name":"Oncoscience","volume":"44 1","pages":"913 - 914"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"STAT3 and mTOR: co-operating to drive HIF and angiogenesis\",\"authors\":\"K. Dodd, A. Tee\",\"doi\":\"10.18632/ONCOSCIENCE.272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our understanding of angiogenic signalling has been significantly enhanced through studies of a rare genetic disorder called Tuberous Sclerosis Complex (TSC). TSC patients are predisposed to highly vascularised tumours, where renal angiomyolipomas produce high levels of vascular endothelial growth factor (VEGF) that can be readily detected. It is well established that VEGF is driven through hypoxic signalling, with the transcription factor hypoxia inducible factor-1α (HIF-1α) playing a crucial role in its expression. Early studies using cell line models of TSC uncovered that the mammalian target of rapamycin complex 1 (mTORC1) is a key mediator of HIF-1α synthesis, and highlighted the anti-angiogenic properties of mTORC1 inhibitors [1]. Herein we review our recent findings characterising mTORC1 mediated regulation of HIF-1α and discuss the clinical implications of our work. \\n \\nWe demonstrated that mTORC1 drives HIF-1α expression via three mechanisms, promoting not only the transcription of HIF-1α mRNA via signal transducer and activator of transcription 3 (STAT3), but also its translation via both eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). This drive in HIF-1α activity downstream of mTORC1 explains why the tumours which present in TSC are so heavily vascularised, and accounts for the anti-tumorigenic properties of mTOR inhibitors used in this setting. In concordance with this, we observe a 10 fold-increase in HIF-1α transcriptional activity under hypoxia with TSC2 loss, highlighting the significant impact mTORC1 activation can have on HIF-1α. \\n \\nWhilst mTORC1 can promote the transcriptional activity of STAT3 through direct phosphorylation of Ser727, STAT3 is also subject to regulation from a number of different cytokines and growth factors which signal through the receptor tyrosine kinase JAK2 [2]. Both JAK2/STAT3 and mTORC1 signalling pathways are frequently activated in a wide range of malignancies and converge at the level of HIF-1α (see Figure ​Figure1).1). Whilst mTOR inhibitors are effective at blocking Ser727 phosphorylation of STAT3, we were able to completely abolish HIF-1α expression by targeting both the JAK2-mediated Tyr705 phosphorylation site and the mTORC1-mediated Ser727 site. Our work indicates that targeting STAT3 in parallel to mTORC1 could enhance the anti-angiogenic and anti-tumorigenic properties of mTOR inhibitors that are currently in clinical use [3]. \\n \\n \\n \\nFigure 1 \\n \\nMultifaceted regulation of HIF-1α/VEGF-A via mTORC1 and STAT3 \\n \\n \\n \\nGrowth of tumours in renal cell carcinoma (RCC) is highly dependent on mTORC1, HIF and VEGF which drive a pro-angiogenic response. In the microenvironment of the kidney, angiogenic signalling is crucial for metabolic transformation and malignancy. Although there has been much investment into drug discovery and the development of inhibitors that directly inhibit HIF, none of these compounds are currently suitable for clinical use. Consequently, current angiogenic therapies have been mainly restricted to inhibition of mTORC1 and the VEGF-receptor (VEGFR). Given that our work now positions STAT3 as an immediate upstream regulator of HIF, drug targeting of STAT3 may be an alternative therapeutic strategy for the treatment of vascularized tumours. \\n \\nWe also identified STAT3 as a common point of convergence for many receptor tyrosine kinases involved in the angiogenic response within Neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs) [4], reflecting the wider implications of this work. We uncovered that STAT3 inhibition or shRNA knockdown was sufficient to completely ablate expression of HIF-1α, HIF-2α and VEGF-A. Previous studies indicated that rapamycin repressed the growth of NF1-associated malignancies, but with minimal effects upon HIF-1α expression indicating that STAT3 primarily drives HIF-1α activity in NF1 [5]. STAT3 is considered an oncogene and mediates a range of cellular processes associated with tumourigenesis, increasing its appeal as a potential therapeutic target [2]. In keeping with this, knockdown of STAT3 inhibited cell migration and blocked tumour spheroid formation in a range of different MPNST cell lines tested [4]. \\n \\nA current limitation of anti-angiogenic therapies targeting the VEGF receptor (VEGFR) is acquired drug resistance. This occurs through activation of compensatory signalling pathways coordinating tumour revascularisation, where a multitude of pro-angiogenic factors (such as VEGF, FGFs, EGF, and IL-8 (as well as others)) signal through a network of target receptor tyrosine kinases (RTK) to elicit the pro-angiogenic response. Consequently, angiogenic signalling is highly flexible and driven through cross-talk between multiple RTKs. This level of flexibility hampers current tyrosine kinase inhibitor therapies [6]. Given that STAT3 is a common downstream target of multiple RTKs, acquired resistance may be less of a problem in this setting. STAT3 is also fairly indispensable in normal cellular function, suggesting that the side effect profile of STAT3 inhibitors should be low. Collectively, our work highlights the need for the development of clinically available STAT3 inhibitors for cancer therapy.\",\"PeriodicalId\":94164,\"journal\":{\"name\":\"Oncoscience\",\"volume\":\"44 1\",\"pages\":\"913 - 914\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18632/ONCOSCIENCE.272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/ONCOSCIENCE.272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

STAT3在正常细胞功能中也是必不可少的,这表明STAT3抑制剂的副作用应该很低。总的来说,我们的工作强调了开发临床可用的STAT3抑制剂用于癌症治疗的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STAT3 and mTOR: co-operating to drive HIF and angiogenesis
Our understanding of angiogenic signalling has been significantly enhanced through studies of a rare genetic disorder called Tuberous Sclerosis Complex (TSC). TSC patients are predisposed to highly vascularised tumours, where renal angiomyolipomas produce high levels of vascular endothelial growth factor (VEGF) that can be readily detected. It is well established that VEGF is driven through hypoxic signalling, with the transcription factor hypoxia inducible factor-1α (HIF-1α) playing a crucial role in its expression. Early studies using cell line models of TSC uncovered that the mammalian target of rapamycin complex 1 (mTORC1) is a key mediator of HIF-1α synthesis, and highlighted the anti-angiogenic properties of mTORC1 inhibitors [1]. Herein we review our recent findings characterising mTORC1 mediated regulation of HIF-1α and discuss the clinical implications of our work. We demonstrated that mTORC1 drives HIF-1α expression via three mechanisms, promoting not only the transcription of HIF-1α mRNA via signal transducer and activator of transcription 3 (STAT3), but also its translation via both eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). This drive in HIF-1α activity downstream of mTORC1 explains why the tumours which present in TSC are so heavily vascularised, and accounts for the anti-tumorigenic properties of mTOR inhibitors used in this setting. In concordance with this, we observe a 10 fold-increase in HIF-1α transcriptional activity under hypoxia with TSC2 loss, highlighting the significant impact mTORC1 activation can have on HIF-1α. Whilst mTORC1 can promote the transcriptional activity of STAT3 through direct phosphorylation of Ser727, STAT3 is also subject to regulation from a number of different cytokines and growth factors which signal through the receptor tyrosine kinase JAK2 [2]. Both JAK2/STAT3 and mTORC1 signalling pathways are frequently activated in a wide range of malignancies and converge at the level of HIF-1α (see Figure ​Figure1).1). Whilst mTOR inhibitors are effective at blocking Ser727 phosphorylation of STAT3, we were able to completely abolish HIF-1α expression by targeting both the JAK2-mediated Tyr705 phosphorylation site and the mTORC1-mediated Ser727 site. Our work indicates that targeting STAT3 in parallel to mTORC1 could enhance the anti-angiogenic and anti-tumorigenic properties of mTOR inhibitors that are currently in clinical use [3]. Figure 1 Multifaceted regulation of HIF-1α/VEGF-A via mTORC1 and STAT3 Growth of tumours in renal cell carcinoma (RCC) is highly dependent on mTORC1, HIF and VEGF which drive a pro-angiogenic response. In the microenvironment of the kidney, angiogenic signalling is crucial for metabolic transformation and malignancy. Although there has been much investment into drug discovery and the development of inhibitors that directly inhibit HIF, none of these compounds are currently suitable for clinical use. Consequently, current angiogenic therapies have been mainly restricted to inhibition of mTORC1 and the VEGF-receptor (VEGFR). Given that our work now positions STAT3 as an immediate upstream regulator of HIF, drug targeting of STAT3 may be an alternative therapeutic strategy for the treatment of vascularized tumours. We also identified STAT3 as a common point of convergence for many receptor tyrosine kinases involved in the angiogenic response within Neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs) [4], reflecting the wider implications of this work. We uncovered that STAT3 inhibition or shRNA knockdown was sufficient to completely ablate expression of HIF-1α, HIF-2α and VEGF-A. Previous studies indicated that rapamycin repressed the growth of NF1-associated malignancies, but with minimal effects upon HIF-1α expression indicating that STAT3 primarily drives HIF-1α activity in NF1 [5]. STAT3 is considered an oncogene and mediates a range of cellular processes associated with tumourigenesis, increasing its appeal as a potential therapeutic target [2]. In keeping with this, knockdown of STAT3 inhibited cell migration and blocked tumour spheroid formation in a range of different MPNST cell lines tested [4]. A current limitation of anti-angiogenic therapies targeting the VEGF receptor (VEGFR) is acquired drug resistance. This occurs through activation of compensatory signalling pathways coordinating tumour revascularisation, where a multitude of pro-angiogenic factors (such as VEGF, FGFs, EGF, and IL-8 (as well as others)) signal through a network of target receptor tyrosine kinases (RTK) to elicit the pro-angiogenic response. Consequently, angiogenic signalling is highly flexible and driven through cross-talk between multiple RTKs. This level of flexibility hampers current tyrosine kinase inhibitor therapies [6]. Given that STAT3 is a common downstream target of multiple RTKs, acquired resistance may be less of a problem in this setting. STAT3 is also fairly indispensable in normal cellular function, suggesting that the side effect profile of STAT3 inhibitors should be low. Collectively, our work highlights the need for the development of clinically available STAT3 inhibitors for cancer therapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Targeting carbohydrate metabolism in colorectal cancer - synergy between DNA-damaging agents, cannabinoids, and intermittent serum starvation. Complete and long-lasting response to immunotherapy in a stage IV non-small cell lung cancer with brain metastasis. The challenge of weight gain in hormone receptor-positive breast cancer. Molecular mechanism of PARP inhibitor resistance. Functional information offers individualized adaptive cancer therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1