约束模糊凸优化问题的神经网络

Na Liu, Han Zhang, Sitian Qin
{"title":"约束模糊凸优化问题的神经网络","authors":"Na Liu, Han Zhang, Sitian Qin","doi":"10.1109/SSCI44817.2019.9002986","DOIUrl":null,"url":null,"abstract":"Fuzzy optimization widely occurs in various field. In this paper, by the virtue of weighting method, the original fuzzy optimization problem is eventually converted to a single-objective form. Then, a neurodynamic approach is introduced for this problem. The state solution of the neural network is shown to enter the feasible region of the considered optimization problem in finite time and remain in the feasible region since then. Moreover, the state solution of the introduced neural network converges to an optimal solution of the considered optimization problem. In the end, a numerical example is presented to clarify the practicability of the introduced neural network.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"2 1","pages":"1007-1012"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Neural Network for Constrained Fuzzy Convex Optimization Problems\",\"authors\":\"Na Liu, Han Zhang, Sitian Qin\",\"doi\":\"10.1109/SSCI44817.2019.9002986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy optimization widely occurs in various field. In this paper, by the virtue of weighting method, the original fuzzy optimization problem is eventually converted to a single-objective form. Then, a neurodynamic approach is introduced for this problem. The state solution of the neural network is shown to enter the feasible region of the considered optimization problem in finite time and remain in the feasible region since then. Moreover, the state solution of the introduced neural network converges to an optimal solution of the considered optimization problem. In the end, a numerical example is presented to clarify the practicability of the introduced neural network.\",\"PeriodicalId\":6729,\"journal\":{\"name\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"2 1\",\"pages\":\"1007-1012\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI44817.2019.9002986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

模糊优化广泛应用于各个领域。本文利用加权法,将原来的模糊优化问题最终转化为单目标优化问题。然后,引入神经动力学方法来解决这一问题。证明了神经网络的状态解在有限时间内进入所考虑的优化问题的可行区域,并从此一直停留在可行区域内。此外,所引入的神经网络的状态解收敛于所考虑的优化问题的最优解。最后通过一个算例说明了所引入的神经网络的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Neural Network for Constrained Fuzzy Convex Optimization Problems
Fuzzy optimization widely occurs in various field. In this paper, by the virtue of weighting method, the original fuzzy optimization problem is eventually converted to a single-objective form. Then, a neurodynamic approach is introduced for this problem. The state solution of the neural network is shown to enter the feasible region of the considered optimization problem in finite time and remain in the feasible region since then. Moreover, the state solution of the introduced neural network converges to an optimal solution of the considered optimization problem. In the end, a numerical example is presented to clarify the practicability of the introduced neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1