高光谱图像分类的深度残差网络

Zilong Zhong, Jonathan Li, Lingfei Ma, Han Jiang, He Zhao
{"title":"高光谱图像分类的深度残差网络","authors":"Zilong Zhong, Jonathan Li, Lingfei Ma, Han Jiang, He Zhao","doi":"10.1109/IGARSS.2017.8127330","DOIUrl":null,"url":null,"abstract":"Deep neural networks can learn deep feature representation for hyperspectral image (HSI) interpretation and achieve high classification accuracy in different datasets. However, counterintuitively, the classification performance of deep learning models degrades as their depth increases. Therefore, we add identity mappings to convolutional neural networks for every two convolutional layers to build deep residual networks (ResNets). To study the influence of deep learning model size on HSI classification accuracy, this paper applied ResNets and CNNs with different depth and width using two challenging datasets. Moreover, we tested the effectiveness of batch normalization as a regularization method with different model settings. The experimental results demonstrate that ResNets mitigate the declining-accuracy effect and achieved promising classification performance with 10% and 5% training sample percentages for the University of Pavia and Indian Pines datasets, respectively. In addition, t-Distributed Stochastic Neighbor Embedding (t-SNE) provides a direct view of the extracted features through dimensionality reduction.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"3 4 1","pages":"1824-1827"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"Deep residual networks for hyperspectral image classification\",\"authors\":\"Zilong Zhong, Jonathan Li, Lingfei Ma, Han Jiang, He Zhao\",\"doi\":\"10.1109/IGARSS.2017.8127330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks can learn deep feature representation for hyperspectral image (HSI) interpretation and achieve high classification accuracy in different datasets. However, counterintuitively, the classification performance of deep learning models degrades as their depth increases. Therefore, we add identity mappings to convolutional neural networks for every two convolutional layers to build deep residual networks (ResNets). To study the influence of deep learning model size on HSI classification accuracy, this paper applied ResNets and CNNs with different depth and width using two challenging datasets. Moreover, we tested the effectiveness of batch normalization as a regularization method with different model settings. The experimental results demonstrate that ResNets mitigate the declining-accuracy effect and achieved promising classification performance with 10% and 5% training sample percentages for the University of Pavia and Indian Pines datasets, respectively. In addition, t-Distributed Stochastic Neighbor Embedding (t-SNE) provides a direct view of the extracted features through dimensionality reduction.\",\"PeriodicalId\":6466,\"journal\":{\"name\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"3 4 1\",\"pages\":\"1824-1827\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2017.8127330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2017.8127330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

摘要

深度神经网络可以学习用于高光谱图像解译的深度特征表示,在不同的数据集上实现较高的分类精度。然而,与直觉相反的是,深度学习模型的分类性能随着深度的增加而下降。因此,我们在卷积神经网络中每两个卷积层添加身份映射以构建深度残差网络(ResNets)。为了研究深度学习模型大小对HSI分类精度的影响,本文使用两个具有挑战性的数据集,分别使用深度和宽度不同的ResNets和cnn。此外,我们用不同的模型设置测试了批归一化作为一种正则化方法的有效性。实验结果表明,ResNets缓解了准确率下降的影响,并在帕维亚大学和印第安松树大学的数据集上分别以10%和5%的训练样本百分比取得了很好的分类性能。此外,t分布随机邻居嵌入(t-SNE)通过降维提供了提取特征的直接视图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep residual networks for hyperspectral image classification
Deep neural networks can learn deep feature representation for hyperspectral image (HSI) interpretation and achieve high classification accuracy in different datasets. However, counterintuitively, the classification performance of deep learning models degrades as their depth increases. Therefore, we add identity mappings to convolutional neural networks for every two convolutional layers to build deep residual networks (ResNets). To study the influence of deep learning model size on HSI classification accuracy, this paper applied ResNets and CNNs with different depth and width using two challenging datasets. Moreover, we tested the effectiveness of batch normalization as a regularization method with different model settings. The experimental results demonstrate that ResNets mitigate the declining-accuracy effect and achieved promising classification performance with 10% and 5% training sample percentages for the University of Pavia and Indian Pines datasets, respectively. In addition, t-Distributed Stochastic Neighbor Embedding (t-SNE) provides a direct view of the extracted features through dimensionality reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ongoing Progress Toward NASA's Surface Biology and Geology Mission Sea Surface Salinity Dynamics in the Bohai Sea Using MODIS Data Water Surface Level Monitoring of the Axios River Wetlands, Greece, Using Airborne and Space-Borne Earth Observation Data Selection of the 3-D Shearlet Cubes for Improving Hyperspectral Image Joint Sparse Classification A New Method for Determining Rain Flag of the Sentinel-3 Altimeter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1