{"title":"相对论空洞、可能性和优势","authors":"S. Mirzanejhad, F. Sohbatzadeh, F. Shams","doi":"10.1017/s026303462000035x","DOIUrl":null,"url":null,"abstract":"The relativistic mirror (RM) is an interesting subject which introduced in the nonlinear regime of the laser–plasma interaction. Reflection of counter-propagating probe pulse from relativistic flying mirror has some excellent features, such as frequency up-shifting and compressing by a factor of 4γ2. In the high-intensity laser–plasma interaction, sometimes a sequence of RMs creates. For example, electron density cusps generate in the nonlinear laser wakefield generation or flying electron sheaths create in the blown-out regime of the laser foil interaction. Under these circumstances, the second counter-propagated seed (probe) pulse can be reflected back and forth between two or more successive RMs. This structure may be used as a relativistic cavity (RECA). Amplification and threshold conditions for the gain medium and pumping rate in the RECA are obtained, and it is shown that amplification can be started from background simultaneous emission (without seed pulse). A new feature of RECA is it's bidirectional (two frequencies) characteristic. Thereupon, the gain process can be implemented on the two different transitions in this bidirectional gain structure. In the RECA, driver pulse may be assembled as a pumping operation, and background plasma medium with high degree ionized substances is a good candidate for gain medium in the UV or X-ray regions. In this paper, we propose a new all-optical cavity for the generation of the ultrashort laser pulse in the UV or X-ray regions.","PeriodicalId":49925,"journal":{"name":"Laser and Particle Beams","volume":"58 1","pages":"251-258"},"PeriodicalIF":1.1000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relativistic cavity, possibilities, and advantages\",\"authors\":\"S. Mirzanejhad, F. Sohbatzadeh, F. Shams\",\"doi\":\"10.1017/s026303462000035x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relativistic mirror (RM) is an interesting subject which introduced in the nonlinear regime of the laser–plasma interaction. Reflection of counter-propagating probe pulse from relativistic flying mirror has some excellent features, such as frequency up-shifting and compressing by a factor of 4γ2. In the high-intensity laser–plasma interaction, sometimes a sequence of RMs creates. For example, electron density cusps generate in the nonlinear laser wakefield generation or flying electron sheaths create in the blown-out regime of the laser foil interaction. Under these circumstances, the second counter-propagated seed (probe) pulse can be reflected back and forth between two or more successive RMs. This structure may be used as a relativistic cavity (RECA). Amplification and threshold conditions for the gain medium and pumping rate in the RECA are obtained, and it is shown that amplification can be started from background simultaneous emission (without seed pulse). A new feature of RECA is it's bidirectional (two frequencies) characteristic. Thereupon, the gain process can be implemented on the two different transitions in this bidirectional gain structure. In the RECA, driver pulse may be assembled as a pumping operation, and background plasma medium with high degree ionized substances is a good candidate for gain medium in the UV or X-ray regions. In this paper, we propose a new all-optical cavity for the generation of the ultrashort laser pulse in the UV or X-ray regions.\",\"PeriodicalId\":49925,\"journal\":{\"name\":\"Laser and Particle Beams\",\"volume\":\"58 1\",\"pages\":\"251-258\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser and Particle Beams\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s026303462000035x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser and Particle Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s026303462000035x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Relativistic cavity, possibilities, and advantages
The relativistic mirror (RM) is an interesting subject which introduced in the nonlinear regime of the laser–plasma interaction. Reflection of counter-propagating probe pulse from relativistic flying mirror has some excellent features, such as frequency up-shifting and compressing by a factor of 4γ2. In the high-intensity laser–plasma interaction, sometimes a sequence of RMs creates. For example, electron density cusps generate in the nonlinear laser wakefield generation or flying electron sheaths create in the blown-out regime of the laser foil interaction. Under these circumstances, the second counter-propagated seed (probe) pulse can be reflected back and forth between two or more successive RMs. This structure may be used as a relativistic cavity (RECA). Amplification and threshold conditions for the gain medium and pumping rate in the RECA are obtained, and it is shown that amplification can be started from background simultaneous emission (without seed pulse). A new feature of RECA is it's bidirectional (two frequencies) characteristic. Thereupon, the gain process can be implemented on the two different transitions in this bidirectional gain structure. In the RECA, driver pulse may be assembled as a pumping operation, and background plasma medium with high degree ionized substances is a good candidate for gain medium in the UV or X-ray regions. In this paper, we propose a new all-optical cavity for the generation of the ultrashort laser pulse in the UV or X-ray regions.
期刊介绍:
Laser and Particle Beams is an international journal which deals with basic physics issues of intense laser and particle beams, and the interaction of these beams with matter. Research on pulse power technology associated with beam generation is also of strong interest. Subjects covered include the physics of high energy densities; non-LTE phenomena; hot dense matter and related atomic, plasma and hydrodynamic physics and astrophysics; intense sources of coherent radiation; high current particle accelerators; beam-wave interaction; and pulsed power technology.