超高清电视视频的块传播背景减法系统

A. Beaugendre, S. Goto
{"title":"超高清电视视频的块传播背景减法系统","authors":"A. Beaugendre, S. Goto","doi":"10.2197/ipsjtcva.7.31","DOIUrl":null,"url":null,"abstract":"The process of Ultra High Definition TV videos requires a lot of resources in terms of memory and computation time. In this paper we consider a block-propagation background subtraction (BPBGS) method which spreads to neighboring blocks if a part of an object is detected on the borders of the current block. This allows us to avoid processing unnecessary areas which do not contain any object thus saving memory and computational time. The results show that our method is particularly efficient in sequences where objects occupy a small portion of the scene despite the fact that there are a lot of background movements. At same scale our BPBGS performs much faster than the state-of-art methods for a similar detection quality.","PeriodicalId":38957,"journal":{"name":"IPSJ Transactions on Computer Vision and Applications","volume":"74 1","pages":"31-34"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Block-Propagative Background Subtraction System for UHDTV Videos\",\"authors\":\"A. Beaugendre, S. Goto\",\"doi\":\"10.2197/ipsjtcva.7.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of Ultra High Definition TV videos requires a lot of resources in terms of memory and computation time. In this paper we consider a block-propagation background subtraction (BPBGS) method which spreads to neighboring blocks if a part of an object is detected on the borders of the current block. This allows us to avoid processing unnecessary areas which do not contain any object thus saving memory and computational time. The results show that our method is particularly efficient in sequences where objects occupy a small portion of the scene despite the fact that there are a lot of background movements. At same scale our BPBGS performs much faster than the state-of-art methods for a similar detection quality.\",\"PeriodicalId\":38957,\"journal\":{\"name\":\"IPSJ Transactions on Computer Vision and Applications\",\"volume\":\"74 1\",\"pages\":\"31-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Computer Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/ipsjtcva.7.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Computer Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.7.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3

摘要

超高清电视视频的处理需要大量的内存资源和计算时间。在本文中,我们考虑了一种块传播背景减法(BPBGS)方法,当在当前块的边界上检测到物体的一部分时,该方法会扩散到相邻的块。这允许我们避免处理不包含任何对象的不必要区域,从而节省内存和计算时间。结果表明,我们的方法在物体占据场景一小部分的序列中特别有效,尽管有很多背景运动。在相同的尺度下,我们的BPBGS在类似的检测质量下比最先进的方法执行得快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Block-Propagative Background Subtraction System for UHDTV Videos
The process of Ultra High Definition TV videos requires a lot of resources in terms of memory and computation time. In this paper we consider a block-propagation background subtraction (BPBGS) method which spreads to neighboring blocks if a part of an object is detected on the borders of the current block. This allows us to avoid processing unnecessary areas which do not contain any object thus saving memory and computational time. The results show that our method is particularly efficient in sequences where objects occupy a small portion of the scene despite the fact that there are a lot of background movements. At same scale our BPBGS performs much faster than the state-of-art methods for a similar detection quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IPSJ Transactions on Computer Vision and Applications
IPSJ Transactions on Computer Vision and Applications Computer Science-Computer Vision and Pattern Recognition
自引率
0.00%
发文量
0
期刊最新文献
3D human pose estimation model using location-maps for distorted and disconnected images by a wearable omnidirectional camera Application of evolutionary and swarm optimization in computer vision: a literature survey Pseudo-labelling-aided semantic segmentation on sparsely annotated 3D point clouds Phase disambiguation using spatio-temporally modulated illumination in depth sensing Deep learning-based strategies for the detection and tracking of drones using several cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1