Guangzhu Tan, Jiejie Tian, Min Gao, Shuai Zhang, Xu Wang, Biyu Yang, Linda Yang, Jiafu Su
{"title":"基于异构特征和多重交互的知识密集型众包推荐任务需求和员工偏好联合建模","authors":"Guangzhu Tan, Jiejie Tian, Min Gao, Shuai Zhang, Xu Wang, Biyu Yang, Linda Yang, Jiafu Su","doi":"10.1504/ijbic.2023.10056898","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":49059,"journal":{"name":"International Journal of Bio-Inspired Computation","volume":"73 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint modelling of task requirements and worker preferences based on heterogeneous features and multiple interactions for knowledge-intensive crowdsourcing recommendation\",\"authors\":\"Guangzhu Tan, Jiejie Tian, Min Gao, Shuai Zhang, Xu Wang, Biyu Yang, Linda Yang, Jiafu Su\",\"doi\":\"10.1504/ijbic.2023.10056898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":49059,\"journal\":{\"name\":\"International Journal of Bio-Inspired Computation\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bio-Inspired Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1504/ijbic.2023.10056898\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bio-Inspired Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1504/ijbic.2023.10056898","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Joint modelling of task requirements and worker preferences based on heterogeneous features and multiple interactions for knowledge-intensive crowdsourcing recommendation
期刊介绍:
IJBIC discusses the new bio-inspired computation methodologies derived from the animal and plant world, such as new algorithms mimicking the wolf schooling, the plant survival process, etc.
Topics covered include:
-New bio-inspired methodologies coming from
creatures living in nature
artificial society-
physical/chemical phenomena-
New bio-inspired methodology analysis tools, e.g. rough sets, stochastic processes-
Brain-inspired methods: models and algorithms-
Bio-inspired computation with big data: algorithms and structures-
Applications associated with bio-inspired methodologies, e.g. bioinformatics.