{"title":"使用核磁共振波谱确定绝对构型的策略","authors":"Thomas J. Wenzel","doi":"10.1016/j.tetasy.2017.09.009","DOIUrl":null,"url":null,"abstract":"<div><p><span>General strategies by which NMR spectroscopy can be used to assign </span>absolute configuration<span> are discussed. These include the use of chiral derivatizing and chiral solvating agents. Areas that are well developed and areas of need in this field are described. The future potential of using aligning media such as chiral liquid crystals and odd-parity effects that may make it possible to determine absolute configuration without the need for an enantiomerically pure reagent are discussed.</span></p></div>","PeriodicalId":22237,"journal":{"name":"Tetrahedron, asymmetry","volume":"28 10","pages":"Pages 1212-1219"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.tetasy.2017.09.009","citationCount":"15","resultStr":"{\"title\":\"Strategies for using NMR spectroscopy to determine absolute configuration\",\"authors\":\"Thomas J. Wenzel\",\"doi\":\"10.1016/j.tetasy.2017.09.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>General strategies by which NMR spectroscopy can be used to assign </span>absolute configuration<span> are discussed. These include the use of chiral derivatizing and chiral solvating agents. Areas that are well developed and areas of need in this field are described. The future potential of using aligning media such as chiral liquid crystals and odd-parity effects that may make it possible to determine absolute configuration without the need for an enantiomerically pure reagent are discussed.</span></p></div>\",\"PeriodicalId\":22237,\"journal\":{\"name\":\"Tetrahedron, asymmetry\",\"volume\":\"28 10\",\"pages\":\"Pages 1212-1219\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.tetasy.2017.09.009\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tetrahedron, asymmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957416617303087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetrahedron, asymmetry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957416617303087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
Strategies for using NMR spectroscopy to determine absolute configuration
General strategies by which NMR spectroscopy can be used to assign absolute configuration are discussed. These include the use of chiral derivatizing and chiral solvating agents. Areas that are well developed and areas of need in this field are described. The future potential of using aligning media such as chiral liquid crystals and odd-parity effects that may make it possible to determine absolute configuration without the need for an enantiomerically pure reagent are discussed.
期刊介绍:
Cessation. Tetrahedron: Asymmetry presents experimental or theoretical research results of outstanding significance and timeliness on asymmetry in organic, inorganic, organometallic and physical chemistry, as well as its application to related disciplines, especially bio-organic chemistry.
The journal publishes critical reviews, original research articles and preliminary communications dealing with all aspects of the chemical, physical and theoretical properties of non-racemic organic and inorganic materials and processes. Topics relevant to the journal include: the physico-chemical and biological properties of enantiomers; strategies and methodologies of asymmetric synthesis; resolution; chirality recognition and enhancement; analytical techniques for assessing enantiomeric purity and the unambiguous determination of absolute configuration; and molecular graphics and modelling methods for interpreting and predicting asymmetric phenomena. Papers describing the synthesis or properties of non-racemic molecules will be required to include a separate statement in the form of a Stereochemistry Abstract, for publication in the same issue, of the criteria used for the assignment of configuration and enantiomeric purity.