基于无摩擦和无噪声观测的宽带力控制系统

Thao Tran Phuong, C. Mitsantisuk, K. Ohishi
{"title":"基于无摩擦和无噪声观测的宽带力控制系统","authors":"Thao Tran Phuong, C. Mitsantisuk, K. Ohishi","doi":"10.1109/AMC.2012.6197016","DOIUrl":null,"url":null,"abstract":"In this paper, a new force sensing technique is proposed to achieve a friction free and wideband force control of a ball screw system. A periodic signal is inserted into the control system for friction reduction. A combination of a high-order disturbance observer and a Kalman-filter is constructed to perform the force sensing operation. The high-order disturbance observer is designed to obtain force estimation with the cancellation of oscillatory disturbance caused by additional periodic signal. The force sensing bandwidth is improved owing to the effective noise suppression in the estimated force by Kalman-filter. Additionally, all of the control algorithms are implemented in a Field Programmable Gate Array (FPGA) with a fast sampling rate that also enables the ability to widen the bandwidth of the force control system. The effectiveness of the proposed method is verified by experimental results.","PeriodicalId":6439,"journal":{"name":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"50 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Wideband force control system based on friction free and noise free observation\",\"authors\":\"Thao Tran Phuong, C. Mitsantisuk, K. Ohishi\",\"doi\":\"10.1109/AMC.2012.6197016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new force sensing technique is proposed to achieve a friction free and wideband force control of a ball screw system. A periodic signal is inserted into the control system for friction reduction. A combination of a high-order disturbance observer and a Kalman-filter is constructed to perform the force sensing operation. The high-order disturbance observer is designed to obtain force estimation with the cancellation of oscillatory disturbance caused by additional periodic signal. The force sensing bandwidth is improved owing to the effective noise suppression in the estimated force by Kalman-filter. Additionally, all of the control algorithms are implemented in a Field Programmable Gate Array (FPGA) with a fast sampling rate that also enables the ability to widen the bandwidth of the force control system. The effectiveness of the proposed method is verified by experimental results.\",\"PeriodicalId\":6439,\"journal\":{\"name\":\"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)\",\"volume\":\"50 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMC.2012.6197016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2012.6197016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了实现滚珠丝杠系统的无摩擦宽带力控制,提出了一种新的力传感技术。在控制系统中插入周期信号以减少摩擦。构造了一个高阶扰动观测器和卡尔曼滤波器的组合来执行力传感操作。设计了高阶扰动观测器,通过抵消附加周期信号引起的振荡扰动来获得力估计。卡尔曼滤波器有效地抑制了力估计中的噪声,提高了力传感带宽。此外,所有的控制算法都是在现场可编程门阵列(FPGA)中实现的,具有快速的采样率,也能够扩大力控制系统的带宽。实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wideband force control system based on friction free and noise free observation
In this paper, a new force sensing technique is proposed to achieve a friction free and wideband force control of a ball screw system. A periodic signal is inserted into the control system for friction reduction. A combination of a high-order disturbance observer and a Kalman-filter is constructed to perform the force sensing operation. The high-order disturbance observer is designed to obtain force estimation with the cancellation of oscillatory disturbance caused by additional periodic signal. The force sensing bandwidth is improved owing to the effective noise suppression in the estimated force by Kalman-filter. Additionally, all of the control algorithms are implemented in a Field Programmable Gate Array (FPGA) with a fast sampling rate that also enables the ability to widen the bandwidth of the force control system. The effectiveness of the proposed method is verified by experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of optimal algorithm in vacuum path planning of robot The HCI method for upper limb disabilities based on EMG and gyros Position/force decoupling for micro-macro bilateral control based on modal space disturbance observer Focusing control system for suppressing multi-harmonic disturbances in high speed optical disk systems Recognition and classification of human motion based on hidden Markov model for motion database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1