Juan Pablo España-Aguilar, Alejandra Paola Polanco-Aguilar, German Yamhure-Kattah
{"title":"坐骨肌支撑减轻膝关节负荷的原型","authors":"Juan Pablo España-Aguilar, Alejandra Paola Polanco-Aguilar, German Yamhure-Kattah","doi":"10.11144/javeriana.iued25.pkrt","DOIUrl":null,"url":null,"abstract":"Objective: The objective of this work was to develop a passive exoskeleton prototype for the relief of knee-load employing ischiatic body weight support. Methods and materials: A functional prototype was developed and tested with three volunteers to analyze its potential effectiveness and effects on gait kinematics. The performance of the prototype was assessed using motion capture and pressure mapping systems, and a testing bench for the study of ischiatic body weight. Results and discussion: The results of the tests indicate that the prototype allows reducing the load supported by the knees and does not have a significant effect on the kinematics of the hip and knee joints. The process allowed the designers to identify possibilities of improvement mainly on reducing the restrictions imposed by the prototype to the motion of the ankles, especially on the midstance of the support phase. Conclusions: The passive exoskeleton prototype developed for ischiatic body weight support allows setting different percentages of knee-load relief. The prototype does not have a significant effect on the kinematics of the hip and knee joints. Nevertheless, improvements must be performed to reduce the restrictions to the motion of the ankles.","PeriodicalId":39036,"journal":{"name":"Ingenieria y Universidad","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prototype for Knee-load Relief through Ischiatic Support\",\"authors\":\"Juan Pablo España-Aguilar, Alejandra Paola Polanco-Aguilar, German Yamhure-Kattah\",\"doi\":\"10.11144/javeriana.iued25.pkrt\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: The objective of this work was to develop a passive exoskeleton prototype for the relief of knee-load employing ischiatic body weight support. Methods and materials: A functional prototype was developed and tested with three volunteers to analyze its potential effectiveness and effects on gait kinematics. The performance of the prototype was assessed using motion capture and pressure mapping systems, and a testing bench for the study of ischiatic body weight. Results and discussion: The results of the tests indicate that the prototype allows reducing the load supported by the knees and does not have a significant effect on the kinematics of the hip and knee joints. The process allowed the designers to identify possibilities of improvement mainly on reducing the restrictions imposed by the prototype to the motion of the ankles, especially on the midstance of the support phase. Conclusions: The passive exoskeleton prototype developed for ischiatic body weight support allows setting different percentages of knee-load relief. The prototype does not have a significant effect on the kinematics of the hip and knee joints. Nevertheless, improvements must be performed to reduce the restrictions to the motion of the ankles.\",\"PeriodicalId\":39036,\"journal\":{\"name\":\"Ingenieria y Universidad\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ingenieria y Universidad\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11144/javeriana.iued25.pkrt\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingenieria y Universidad","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11144/javeriana.iued25.pkrt","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Prototype for Knee-load Relief through Ischiatic Support
Objective: The objective of this work was to develop a passive exoskeleton prototype for the relief of knee-load employing ischiatic body weight support. Methods and materials: A functional prototype was developed and tested with three volunteers to analyze its potential effectiveness and effects on gait kinematics. The performance of the prototype was assessed using motion capture and pressure mapping systems, and a testing bench for the study of ischiatic body weight. Results and discussion: The results of the tests indicate that the prototype allows reducing the load supported by the knees and does not have a significant effect on the kinematics of the hip and knee joints. The process allowed the designers to identify possibilities of improvement mainly on reducing the restrictions imposed by the prototype to the motion of the ankles, especially on the midstance of the support phase. Conclusions: The passive exoskeleton prototype developed for ischiatic body weight support allows setting different percentages of knee-load relief. The prototype does not have a significant effect on the kinematics of the hip and knee joints. Nevertheless, improvements must be performed to reduce the restrictions to the motion of the ankles.
期刊介绍:
Our journal''s main objective is to serve as a medium for the diffusion and divulgation of the articles and investigations in the engineering scientific and investigative fields. All the documents presented as result of an investigation will be received, as well as any review about engineering, this includes essays that might contribute to the academic and scientific discussion of any of the branches of engineering. Any contribution to the subject related to engineering development, ethics, values, or its relations with policies, culture, society and environmental fields are welcome. The publication frequency is semestral.