{"title":"自适应噪声注入训练确定性教师随机学生网络","authors":"Y. Tan, Y. Elovici, A. Binder","doi":"10.1109/ICPR48806.2021.9412385","DOIUrl":null,"url":null,"abstract":"Adversarial attacks have been a prevalent problem causing misclassification in machine learning models, with stochasticity being a promising direction towards greater robustness. However, stochastic networks frequently underperform compared to deterministic deep networks. In this work, we present a conceptually clear adaptive noise injection mechanism in combination with teacher-initialisation, which adjusts its degree of randomness dynamically through the computation of mini-batch statistics. This mechanism is embedded within a simple framework to obtain stochastic networks from existing deterministic networks. Our experiments show that our method is able to outperform prior baselines under white-box settings, exemplified through CIFAR-10 and CIFAR-100. Following which, we perform in-depth analysis on varying different components of training with our approach on the effects of robustness and accuracy, through the study of the evolution of decision boundary and trend curves of clean accuracy/attack success over differing degrees of stochasticity. We also shed light on the effects of adversarial training on a pre-trained network, through the lens of decision boundaries.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"17 1","pages":"7587-7594"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Noise Injection for Training Stochastic Student Networks from Deterministic Teachers\",\"authors\":\"Y. Tan, Y. Elovici, A. Binder\",\"doi\":\"10.1109/ICPR48806.2021.9412385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adversarial attacks have been a prevalent problem causing misclassification in machine learning models, with stochasticity being a promising direction towards greater robustness. However, stochastic networks frequently underperform compared to deterministic deep networks. In this work, we present a conceptually clear adaptive noise injection mechanism in combination with teacher-initialisation, which adjusts its degree of randomness dynamically through the computation of mini-batch statistics. This mechanism is embedded within a simple framework to obtain stochastic networks from existing deterministic networks. Our experiments show that our method is able to outperform prior baselines under white-box settings, exemplified through CIFAR-10 and CIFAR-100. Following which, we perform in-depth analysis on varying different components of training with our approach on the effects of robustness and accuracy, through the study of the evolution of decision boundary and trend curves of clean accuracy/attack success over differing degrees of stochasticity. We also shed light on the effects of adversarial training on a pre-trained network, through the lens of decision boundaries.\",\"PeriodicalId\":6783,\"journal\":{\"name\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"volume\":\"17 1\",\"pages\":\"7587-7594\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR48806.2021.9412385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9412385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Noise Injection for Training Stochastic Student Networks from Deterministic Teachers
Adversarial attacks have been a prevalent problem causing misclassification in machine learning models, with stochasticity being a promising direction towards greater robustness. However, stochastic networks frequently underperform compared to deterministic deep networks. In this work, we present a conceptually clear adaptive noise injection mechanism in combination with teacher-initialisation, which adjusts its degree of randomness dynamically through the computation of mini-batch statistics. This mechanism is embedded within a simple framework to obtain stochastic networks from existing deterministic networks. Our experiments show that our method is able to outperform prior baselines under white-box settings, exemplified through CIFAR-10 and CIFAR-100. Following which, we perform in-depth analysis on varying different components of training with our approach on the effects of robustness and accuracy, through the study of the evolution of decision boundary and trend curves of clean accuracy/attack success over differing degrees of stochasticity. We also shed light on the effects of adversarial training on a pre-trained network, through the lens of decision boundaries.