Pan Zhang, Wenjie Qin, Haoyun Ma, Jundong Wu, Yangwu Wang
{"title":"多磁性小型软机器人运动分析与实验","authors":"Pan Zhang, Wenjie Qin, Haoyun Ma, Jundong Wu, Yangwu Wang","doi":"10.20965/jaciii.2023.p0340","DOIUrl":null,"url":null,"abstract":"Since magnetic field is penetrating and harmless to human body, magnetic soft robots driven by magnetic field have great potential in medical fields. Thus, magnetic soft robots have attracted wide attention. However, the current researches mainly focus on the design of a single magnetic soft robot. Multiple magnetic soft robots also deserve to be studied due to their applications in collaborative operation. This paper presents a new design and fabrication method of multiple magnetic small-scale soft robots with different magnetic strength, size, and length-width ratio. The robots can be controlled to move in different motion modes and motion states under identical magnetic field. By analyzing their magnetic response property, which is the switching conditions between the two motion modes, and analyzing their states of the walking motion, two robots are selected from a batch of fabricated robots to carry out experiment. The results show that the two robots can move in different motion modes in the identical magnetic field.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"6 1","pages":"340-345"},"PeriodicalIF":0.7000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion Analysis and Experiment of Multiple Magnetic Small-Scale Soft Robots\",\"authors\":\"Pan Zhang, Wenjie Qin, Haoyun Ma, Jundong Wu, Yangwu Wang\",\"doi\":\"10.20965/jaciii.2023.p0340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since magnetic field is penetrating and harmless to human body, magnetic soft robots driven by magnetic field have great potential in medical fields. Thus, magnetic soft robots have attracted wide attention. However, the current researches mainly focus on the design of a single magnetic soft robot. Multiple magnetic soft robots also deserve to be studied due to their applications in collaborative operation. This paper presents a new design and fabrication method of multiple magnetic small-scale soft robots with different magnetic strength, size, and length-width ratio. The robots can be controlled to move in different motion modes and motion states under identical magnetic field. By analyzing their magnetic response property, which is the switching conditions between the two motion modes, and analyzing their states of the walking motion, two robots are selected from a batch of fabricated robots to carry out experiment. The results show that the two robots can move in different motion modes in the identical magnetic field.\",\"PeriodicalId\":45921,\"journal\":{\"name\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"volume\":\"6 1\",\"pages\":\"340-345\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jaciii.2023.p0340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Motion Analysis and Experiment of Multiple Magnetic Small-Scale Soft Robots
Since magnetic field is penetrating and harmless to human body, magnetic soft robots driven by magnetic field have great potential in medical fields. Thus, magnetic soft robots have attracted wide attention. However, the current researches mainly focus on the design of a single magnetic soft robot. Multiple magnetic soft robots also deserve to be studied due to their applications in collaborative operation. This paper presents a new design and fabrication method of multiple magnetic small-scale soft robots with different magnetic strength, size, and length-width ratio. The robots can be controlled to move in different motion modes and motion states under identical magnetic field. By analyzing their magnetic response property, which is the switching conditions between the two motion modes, and analyzing their states of the walking motion, two robots are selected from a batch of fabricated robots to carry out experiment. The results show that the two robots can move in different motion modes in the identical magnetic field.